IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1013709.html
   My bibliography  Save this article

Real-time forecasting of data revisions in epidemic surveillance streams

Author

Listed:
  • Jingjing Tang
  • Aaron Rumack
  • Bryan Wilder
  • Roni Rosenfeld

Abstract

Epidemic data streams undergo frequent revisions due to reporting delays (“backfill”) and other factors. Relying on tentative surveillance values can seriously degrade the quality of situational awareness, forecasting accuracy and decision-making. We introduce Delphi Revision Forecast (Delphi-RF), a real-time data revision forecasting framework using nonparametric quantile regression, applicable to both counts and proportions (fractions) in public health reporting. By incorporating all available revisions up to a given estimation date, Delphi-RF models revision dynamics and generates distributional forecasts of finalized surveillance values. Applied to daily COVID-19 data (insurance claims, antigen tests, confirmed cases) and weekly dengue and influenza-like illness (ILI) case counts, Delphi-RF delivers accurate revision forecasts, particularly in early reporting stages. In addition, it improves computational efficiency by more than 10-100x compared to existing methods, making it a scalable solution for real-time public health surveillance.Author summary: Accurate and reliable forecasts of infectious disease epidemics, such as COVID-19, are essential but challenging. The presence of data revisions in public health data streams can introduce significant biases in both predictors and responses, leading to suboptimal situational awareness, preparedness, and downstream countermeasure design. To address this issue, we propose a modeling framework that leverages historical revision patterns to generate distributional forecasts of finalized surveillance values. Applicable to both count-type and fraction-type data across various temporal resolutions and epidemic surveillance data streams, our approach ensures real-time accuracy, even with only early revisions available. Moreover, our method achieves competitive or superior forecast accuracy compared to existing methods, while also demonstrating a more than 10-100x improvement in computational efficiency.

Suggested Citation

  • Jingjing Tang & Aaron Rumack & Bryan Wilder & Roni Rosenfeld, 2025. "Real-time forecasting of data revisions in epidemic surveillance streams," PLOS Computational Biology, Public Library of Science, vol. 21(11), pages 1-24, November.
  • Handle: RePEc:plo:pcbi00:1013709
    DOI: 10.1371/journal.pcbi.1013709
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1013709
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1013709&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1013709?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Croushore, Dean, 2006. "Forecasting with Real-Time Macroeconomic Data," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 17, pages 961-982, Elsevier.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keijsers, Bart & van Dijk, Dick, 2025. "Does economic uncertainty predict real activity in real time?," International Journal of Forecasting, Elsevier, vol. 41(2), pages 748-762.
    2. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
    3. Clements, Michael P. & Beatriz Galvao, Ana, "undated". "Real-time Forecasting of Inflation and Output Growth in the Presence of Data Revisions," Economic Research Papers 270771, University of Warwick - Department of Economics.
    4. Todd E. Clark & Michael W. McCracken, 2010. "Averaging forecasts from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 5-29, January.
    5. Warne, Anders, 2023. "DSGE model forecasting: rational expectations vs. adaptive learning," Working Paper Series 2768, European Central Bank.
    6. S. Boragan Aruoba & Francis X. Diebold, 2010. "Real-Time Macroeconomic Monitoring: Real Activity, Inflation, and Interactions," American Economic Review, American Economic Association, vol. 100(2), pages 20-24, May.
    7. Graham Elliott & Allan Timmermann, 2016. "Economic Forecasting," Economics Books, Princeton University Press, edition 1, number 10740.
    8. Clements, Michael P. & Beatriz Galvão, Ana, 2010. "First announcements and real economic activity," European Economic Review, Elsevier, vol. 54(6), pages 803-817, August.
    9. Leif Anders Thorsrud, 2016. "Nowcasting using news topics Big Data versus big bank," Working Papers No 6/2016, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    10. Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2014. "Nowcasting GDP in Real Time: A Density Combination Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(1), pages 48-68, January.
    11. Sinclair, Tara M., 2019. "Characteristics and implications of Chinese macroeconomic data revisions," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1108-1117.
    12. Aastveit, Knut Are & Anundsen, André K. & Herstad, Eyo I., 2019. "Residential investment and recession predictability," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1790-1799.
    13. Clements Michael P., 2012. "Forecasting U.S. Output Growth with Non-Linear Models in the Presence of Data Uncertainty," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(1), pages 1-27, January.
    14. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2016. "Common Drifting Volatility in Large Bayesian VARs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 375-390, July.
    15. Garnitz, Johanna & Lehmann, Robert & Wohlrabe, Klaus, 2019. "Forecasting GDP all over the world using leading indicators based on comprehensive survey data," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 51(54), pages 5802-5816.
    16. Nikoleta Anesti & Ana Beatriz Galvao & Silvia Miranda-Agrippino, 2018. "Uncertain Kingdom: Nowcasting GDP and its Revisions," Discussion Papers 1824, Centre for Macroeconomics (CFM).
    17. Stefan Neuwirth, 2017. "Time-varying mixed frequency forecasting: A real-time experiment," KOF Working papers 17-430, KOF Swiss Economic Institute, ETH Zurich.
    18. Davide Delle Monache & Andrea De Polis & Ivan Petrella, 2024. "Modeling and Forecasting Macroeconomic Downside Risk," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 1010-1025, July.
    19. repec:zbw:bofitp:2011_035 is not listed on IDEAS
    20. Barbara Rossi, 2021. "Forecasting in the Presence of Instabilities: How We Know Whether Models Predict Well and How to Improve Them," Journal of Economic Literature, American Economic Association, vol. 59(4), pages 1135-1190, December.
    21. Michael Pfarrhofer, 2024. "Forecasts with Bayesian vector autoregressions under real time conditions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 771-801, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1013709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.