IDEAS home Printed from https://ideas.repec.org/a/plo/pbio00/3001409.html
   My bibliography  Save this article

The economics of managing evolution

Author

Listed:
  • Troy Day
  • David A Kennedy
  • Andrew F Read
  • David McAdams

Abstract

Humans are altering biological systems at unprecedented rates, and these alterations often have longer-term evolutionary impacts. Most obvious is the spread of resistance to pesticides and antibiotics. There are a wide variety of management strategies available to slow this evolution, and there are many reasons for using them. In this paper, we focus on the economic aspects of evolution management and ask: When is it economically beneficial for an individual decision-maker to invest in evolution management? We derive a simple dimensionless inequality showing that it is cost-effective to manage evolution when the percentage increase in the effective life span of the biological resource that management generates is larger than the percentage increase in annual profit that could be obtained by not managing evolution. We show how this inequality can be used to determine optimal investment choices for single decision-makers, to determine Nash equilibrium investment choices for multiple interacting decision-makers, and to examine how these equilibrium choices respond to regulatory interventions aimed at stimulating investment in evolution management. Our results are illustrated with examples involving Bacillus thuringiensis (Bt) crops and antibiotic use in fish farming.Humans are altering biological systems at unprecedented rates and these alterations often have longer-term evolutionary impacts, such as the spread of resistance to pesticides and antibiotics. In this study, a simple mathematical criterion is derived determining when it is economically beneficial to invest in strategies for controlling and managing evolutionary change.

Suggested Citation

  • Troy Day & David A Kennedy & Andrew F Read & David McAdams, 2021. "The economics of managing evolution," PLOS Biology, Public Library of Science, vol. 19(11), pages 1-14, November.
  • Handle: RePEc:plo:pbio00:3001409
    DOI: 10.1371/journal.pbio.3001409
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3001409
    Download Restriction: no

    File URL: https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.3001409&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pbio.3001409?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ren, Bijie & Polasky, Stephen, 2014. "The optimal management of renewable resources under the risk of potential regime shift," Journal of Economic Dynamics and Control, Elsevier, vol. 40(C), pages 195-212.
    2. Laxminarayan, Ramanan, 2001. "Bacterial Resistance and the Optimal Use of Antibiotics," Discussion Papers 10479, Resources for the Future.
    3. Tsur, Yacov & Zemel, Amos, 1996. "Accounting for global warming risks: Resource management under event uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 20(6-7), pages 1289-1305.
    4. Michael J. Livingston & Gerald A. Carlson & Paul L. Fackler, 2004. "Managing Resistance Evolution in Two Pests to Two Toxins with Refugia," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(1), pages 1-13.
    5. Hurley, Terrance M. & Babcock, Bruce A. & Hellmich, Richard L., 2001. "Bt Corn And Insect Resistance: An Economic Assessment Of Refuges," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 26(01), pages 1-19, July.
    6. Joëlle Noailly, 2008. "Coevolution of economic and ecological systems," Journal of Evolutionary Economics, Springer, vol. 18(1), pages 1-29, February.
    7. Tsur Yacov & Zemel Amos, 1995. "Uncertainty and Irreversibility in Groundwater Resource Management," Journal of Environmental Economics and Management, Elsevier, vol. 29(2), pages 149-161, September.
    8. Laxminarayan, Ramanan & Brown, Gardner M., 2001. "Economics of Antibiotic Resistance: A Theory of Optimal Use," Journal of Environmental Economics and Management, Elsevier, vol. 42(2), pages 183-206, September.
    9. Markus Herrmann & Ramanan Laxminarayan, 2010. "Antibiotic Effectiveness: New Challenges in Natural Resource Management," Annual Review of Resource Economics, Annual Reviews, vol. 2(1), pages 125-138, October.
    10. Laxminarayan, Ramanan, 2001. "Bacterial Resistance and the Optimal Use of Antibiotics," RFF Working Paper Series dp-01-23, Resources for the Future.
    11. Kumar, Ramesh C., 2005. "How to eat a cake of unknown size: A reconsideration," Journal of Environmental Economics and Management, Elsevier, vol. 50(2), pages 408-421, September.
    12. Clarke, Harry R. & Reed, William J., 1994. "Consumption/pollution tradeoffs in an environment vulnerable to pollution-related catastrophic collapse," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 991-1010, September.
    13. Cropper, M. L., 1976. "Regulating activities with catastrophic environmental effects," Journal of Environmental Economics and Management, Elsevier, vol. 3(1), pages 1-15, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brozovic, Nicholas & Schlenker, Wolfram, 2011. "Optimal management of an ecosystem with an unknown threshold," Ecological Economics, Elsevier, vol. 70(4), pages 627-640, February.
    2. Polasky, Stephen & de Zeeuw, Aart & Wagener, Florian, 2011. "Optimal management with potential regime shifts," Journal of Environmental Economics and Management, Elsevier, vol. 62(2), pages 229-240, September.
    3. Tsur, Yacov & Zemel, Amos, 2002. "Endangered Aquifers: Groundwater Management Under Threats Of Catastrophic Events," Discussion Papers 14993, Hebrew University of Jerusalem, Department of Agricultural Economics and Management.
    4. Tsur, Yacov & Zemel, Amos, 1998. "Pollution control in an uncertain environment," Journal of Economic Dynamics and Control, Elsevier, vol. 22(6), pages 967-975, June.
    5. Nkuiya, Bruno & Diekert, Florian, 2023. "Stochastic growth and regime shift risk in renewable resource management," Ecological Economics, Elsevier, vol. 208(C).
    6. Tsur, Yacov & Zemel, Amos, 2001. "The infinite horizon dynamic optimization problem revisited: A simple method to determine equilibrium states," European Journal of Operational Research, Elsevier, vol. 131(3), pages 482-490, June.
    7. repec:pri:wwseco:dp224 is not listed on IDEAS
    8. Leizarowitz, Arie & Tsur, Yacov, 2012. "Renewable resource management with stochastic recharge and environmental threats," Journal of Economic Dynamics and Control, Elsevier, vol. 36(5), pages 736-753.
    9. Naevdal, Eric, 2006. "Dynamic optimisation in the presence of threshold effects when the location of the threshold is uncertain - with an application to a possible disintegration of the Western Antarctic Ice Sheet," Journal of Economic Dynamics and Control, Elsevier, vol. 30(7), pages 1131-1158, July.
    10. Bommier, Antoine & Lanz, Bruno & Zuber, Stéphane, 2015. "Models-as-usual for unusual risks? On the value of catastrophic climate change," Journal of Environmental Economics and Management, Elsevier, vol. 74(C), pages 1-22.
    11. Maria Arvaniti & Chandra K. Krishnamurthy & Anne-Sophie Crépin, 2019. "Time-consistent resource management with regime shifts," CER-ETH Economics working paper series 19/329, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    12. Gustav Engström & Johan Gars, 2016. "Climatic Tipping Points and Optimal Fossil-Fuel Use," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(3), pages 541-571, November.
    13. Sakamoto, Hiroaki, 2014. "Dynamic resource management under the risk of regime shifts," Journal of Environmental Economics and Management, Elsevier, vol. 68(1), pages 1-19.
    14. Fesselmeyer, Eric & Santugini, Marc, 2013. "Strategic exploitation of a common resource under environmental risk," Journal of Economic Dynamics and Control, Elsevier, vol. 37(1), pages 125-136.
    15. Mavi, Can Askan, 2020. "Can harmful events be another source of environmental traps?," Journal of Mathematical Economics, Elsevier, vol. 89(C), pages 29-46.
    16. Tsur, Yacov & Zemel, Amos, 1995. "ON EVENT UNCERTAINTY AND RENEWABLE RESOURCE MANAGEMENT; Proceedings of the 4th Minnesota Padova Conference on Food, Agriculture, and the Environment, September 4-10, 1994, Wayzata, MN," Working Papers 14434, University of Minnesota, Center for International Food and Agricultural Policy.
    17. Tsur, Yacov & Zemel, Amos, 2006. "Welfare measurement under threats of environmental catastrophes," Journal of Environmental Economics and Management, Elsevier, vol. 52(1), pages 421-429, July.
    18. Murray C. Kemp & Ngo Van Long, 2007. "Extracting Several Resource Deposits of Unknown Size: Optimal Order," CIRANO Working Papers 2007s-10, CIRANO.
    19. Naveed Chehrazi & Lauren E. Cipriano & Eva A. Enns, 2019. "Dynamics of Drug Resistance: Optimal Control of an Infectious Disease," Operations Research, INFORMS, vol. 67(3), pages 619-650, May.
    20. Aurélie Méjean & Antonin Pottier & Marc Fleurbaey & Stéphane Zuber, 2020. "Catastrophic climate change, population ethics and intergenerational equity," Climatic Change, Springer, vol. 163(2), pages 873-890, November.
    21. Can Askan Mavi, 2019. "Can harmful events be another source of environmental traps?," CEE-M Working Papers halshs-02141789, CEE-M, Universtiy of Montpellier, CNRS, INRA, Montpellier SupAgro.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:3001409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.