IDEAS home Printed from https://ideas.repec.org/a/pal/palcom/v11y2024i1d10.1057_s41599-024-03859-9.html
   My bibliography  Save this article

The devil is in the details! Effect of differentiated platform governance on online review manipulation

Author

Listed:
  • Qiang Wang

    (Wenzhou University of Technology)

  • Wen Zhang

    (Beijing University of Technology)

  • Jian Li

    (Beijing University of Technology)

  • Feng Mai

    (Stevens Institute of Technology)

  • Zhenzhong Ma

    (University of Windsor)

Abstract

Recent years have witnessed an increasing number of manipulated online reviews in e-commerce platforms. Previous research has provided substantial evidence that vendor manipulation of online reviews has a significant negative impact on the stakeholders involved in the e-commerce business. Many platforms take various governance measures to filter manipulated reviews. Nevertheless, the effectiveness of these measures still remains unknown to a large extent. To bridge this research gap, this paper investigates the effect of differentiated platform governance, including defined as interventions to counterattack manipulation intensity, manipulation duration, and perceived quality manipulated, on the probability of future review manipulation. We develop a game theoretical model that incorporates the strategic interactions between the platform and vendors, which yield several testable hypotheses. We then conduct an empirical analysis of platform governance and review manipulation by using the review manipulation data collected from Amazon.com. Results of the analytical model and empirical analysis show that platform governance that targets manipulation intensity and manipulation duration can both effectively mitigate review manipulation probability. On the contrary, platform governance to counterattack manipulating perceived product quality exhibits an inverted U-shape relationship with review manipulation probability. This study provides novel insights into how to better mitigate online review manipulation for e-commerce platforms.

Suggested Citation

  • Qiang Wang & Wen Zhang & Jian Li & Feng Mai & Zhenzhong Ma, 2024. "The devil is in the details! Effect of differentiated platform governance on online review manipulation," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.
  • Handle: RePEc:pal:palcom:v:11:y:2024:i:1:d:10.1057_s41599-024-03859-9
    DOI: 10.1057/s41599-024-03859-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41599-024-03859-9
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41599-024-03859-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Dina Mayzlin & Yaniv Dover & Judith Chevalier, 2014. "Promotional Reviews: An Empirical Investigation of Online Review Manipulation," American Economic Review, American Economic Association, vol. 104(8), pages 2421-2455, August.
    3. Louisa Ha & Yang Yang, 2023. "Research about persuasive effects of social media influencers as online opinion leaders 1990-2020: a review," International Journal of Internet Marketing and Advertising, Inderscience Enterprises Ltd, vol. 18(2/3), pages 220-241.
    4. Chrysanthos Dellarocas, 2006. "Strategic Manipulation of Internet Opinion Forums: Implications for Consumers and Firms," Management Science, INFORMS, vol. 52(10), pages 1577-1593, October.
    5. Wen Zhang & Qiang Wang & Jian Li & Zhenzhong Ma & Gokul Bhandari & Rui Peng, 2023. "What makes deceptive online reviews? A linguistic analysis perspective," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.
    6. Dezhi Yin & Sabyasachi Mitra & Han Zhang, 2016. "Research Note—When Do Consumers Value Positive vs. Negative Reviews? An Empirical Investigation of Confirmation Bias in Online Word of Mouth," Information Systems Research, INFORMS, vol. 27(1), pages 131-144, March.
    7. Zhuang, Mengzhou & Cui, Geng & Peng, Ling, 2018. "Manufactured opinions: The effect of manipulating online product reviews," Journal of Business Research, Elsevier, vol. 87(C), pages 24-35.
    8. Ansari, Sana & Gupta, Sumeet, 2021. "Customer perception of the deceptiveness of online product reviews: A speech act theory perspective," International Journal of Information Management, Elsevier, vol. 57(C).
    9. Uttara M. Ananthakrishnan & Beibei Li & Michael D. Smith, 2020. "A Tangled Web: Should Online Review Portals Display Fraudulent Reviews?," Information Systems Research, INFORMS, vol. 31(3), pages 950-971, September.
    10. Man Yu & Laurens Debo & Roman Kapuscinski, 2016. "Strategic Waiting for Consumer-Generated Quality Information: Dynamic Pricing of New Experience Goods," Management Science, INFORMS, vol. 62(2), pages 410-435, February.
    11. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    12. Zhihong Ke & De Liu & Daniel J. Brass, 2020. "Do Online Friends Bring Out the Best in Us? The Effect of Friend Contributions on Online Review Provision," Information Systems Research, INFORMS, vol. 31(4), pages 1322-1336, December.
    13. Hu, Han-fen & Krishen, Anjala S., 2019. "When is enough, enough? Investigating product reviews and information overload from a consumer empowerment perspective," Journal of Business Research, Elsevier, vol. 100(C), pages 27-37.
    14. Pradeep K. Chintagunta & Shyam Gopinath & Sriram Venkataraman, 2010. "The Effects of Online User Reviews on Movie Box Office Performance: Accounting for Sequential Rollout and Aggregation Across Local Markets," Marketing Science, INFORMS, vol. 29(5), pages 944-957, 09-10.
    15. Michael Luca & Georgios Zervas, 2016. "Fake It Till You Make It: Reputation, Competition, and Yelp Review Fraud," Management Science, INFORMS, vol. 62(12), pages 3412-3427, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen Zhang & Qiang Wang & Jian Li & Zhenzhong Ma & Gokul Bhandari & Rui Peng, 2023. "What makes deceptive online reviews? A linguistic analysis perspective," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.
    2. Tao Lu & May Yuan & Chong (Alex) Wang & Xiaoquan (Michael) Zhang, 2022. "Histogram Distortion Bias in Consumer Choices," Management Science, INFORMS, vol. 68(12), pages 8963-8978, December.
    3. Wang, Qiang & Zhang, Wen & Li, Jian & Ma, Zhenzhong, 2023. "Complements or confounders? A study of effects of target and non-target features on online fraudulent reviewer detection," Journal of Business Research, Elsevier, vol. 167(C).
    4. Mardumyan, Anna & Siret, Iris, 2023. "When review verification does more harm than good: How certified reviews determine customer–brand relationship quality," Journal of Business Research, Elsevier, vol. 160(C).
    5. Juan Feng & Xin Li & Xiaoquan (Michael) Zhang, 2019. "Online Product Reviews-Triggered Dynamic Pricing: Theory and Evidence," Information Systems Research, INFORMS, vol. 30(4), pages 1107-1123, December.
    6. Sherry He & Brett Hollenbeck & Davide Proserpio, 2022. "The Market for Fake Reviews," Marketing Science, INFORMS, vol. 41(5), pages 896-921, September.
    7. Guo, Qiaozhen & Chen, Ying-Ju & Huang, Wei, 2022. "Dynamic pricing of new experience products with dual-channel social learning and online review manipulations," Omega, Elsevier, vol. 109(C).
    8. Warut Khern-am-nuai & Karthik Kannan & Hossein Ghasemkhani, 2018. "Extrinsic versus Intrinsic Rewards for Contributing Reviews in an Online Platform," Information Systems Research, INFORMS, vol. 29(4), pages 871-892, December.
    9. Liting Li & Haichao Zheng & Dongyu Chen & Bin Zhu, 2024. "Whose reviews are most valuable for predicting the default risk of peer-to-peer lending platforms? Evidence from China," Electronic Commerce Research, Springer, vol. 24(3), pages 1619-1658, September.
    10. Kim, Jong Min & Park, Keeyeon Ki-cheon & Mariani, Marcello M., 2023. "Do online review readers react differently when exposed to credible versus fake online reviews?," Journal of Business Research, Elsevier, vol. 154(C).
    11. Dominik Gutt & Jürgen Neumann & Steffen Zimmermann & Dennis Kundisch & Jianqing Chen, 2018. "Design of Review Systems - A Strategic Instrument to shape Online Review Behavior and Economic Outcomes," Working Papers Dissertations 42, Paderborn University, Faculty of Business Administration and Economics.
    12. Chatterjee, Sheshadri & Chaudhuri, Ranjan & Kumar, Ajay & Lu Wang, Cheng & Gupta, Shivam, 2023. "Impacts of consumer cognitive process to ascertain online fake review: A cognitive dissonance theory approach," Journal of Business Research, Elsevier, vol. 154(C).
    13. Hailiang Chen & Prabuddha De & Yu Jeffrey Hu, 2015. "IT-Enabled Broadcasting in Social Media: An Empirical Study of Artists’ Activities and Music Sales," Information Systems Research, INFORMS, vol. 26(3), pages 513-531, September.
    14. Cheng Zhao & Chong Alex Wang, 2023. "A cross-site comparison of online review manipulation using Benford’s law," Electronic Commerce Research, Springer, vol. 23(1), pages 365-406, March.
    15. Harrison-Walker, L. Jean & Jiang, Ying, 2023. "Suspicion of online product reviews as fake: Cues and consequences," Journal of Business Research, Elsevier, vol. 160(C).
    16. Li, Yuanshuo & Zhang, Zili & Pedersen, Susanne & Liu, Xudong & Zhang, Ziqiong, 2023. "The influence of relative popularity on negative fake reviews: A case study on restaurant reviews," Journal of Business Research, Elsevier, vol. 162(C).
    17. Sungsik Park & Woochoel Shin & Jinhong Xie, 2021. "The Fateful First Consumer Review," Marketing Science, INFORMS, vol. 40(3), pages 481-507, May.
    18. Zhuang, Mengzhou & Cui, Geng & Peng, Ling, 2018. "Manufactured opinions: The effect of manipulating online product reviews," Journal of Business Research, Elsevier, vol. 87(C), pages 24-35.
    19. Theodoros Lappas & Gaurav Sabnis & Georgios Valkanas, 2016. "The Impact of Fake Reviews on Online Visibility: A Vulnerability Assessment of the Hotel Industry," Information Systems Research, INFORMS, vol. 27(4), pages 940-961, December.
    20. Kim, Jong Min & Park, Keeyeon Ki-cheon & Mariani, Marcello & Wamba, Samuel Fosso, 2024. "Investigating reviewers' intentions to post fake vs. authentic reviews based on behavioral linguistic features," Technological Forecasting and Social Change, Elsevier, vol. 198(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:palcom:v:11:y:2024:i:1:d:10.1057_s41599-024-03859-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: https://www.nature.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.