IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v57y2006i8d10.1057_palgrave.jors.2602077.html
   My bibliography  Save this article

Optimizing VVT strategies: a decomposition approach

Author

Listed:
  • M Barad

    (Tel Aviv University)

  • A Engel

    (Israel Aircraft Industries)

Abstract

Verification, validation and testing (VVT) of large systems is an important but complex process. The decisions involved have to consider on one hand the controllable variables associated with investments in appraisal and prevention activities and on the other hand the outcomes of these decisions that are associated with risk impacts and systems' failures. Typically, quantitative models of such large systems use simulation to generate distributions of possible costs and risk outcomes. Here, by assuming independence of risk impacts, we decompose the decision process into separate decisions for each VVT activity and supercede the simulation technique by simple analytical models. We explore various optimization objectives of VVT strategies such as minimum total expected cost, minimum uncertainty as well as a generalized optimization objective expressing Taguchi's expected loss function and provide explicit solutions. A numerical example based on simplified data of a case study is used to demonstrate the proposed VVT optimization procedure.

Suggested Citation

  • M Barad & A Engel, 2006. "Optimizing VVT strategies: a decomposition approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(8), pages 965-974, August.
  • Handle: RePEc:pal:jorsoc:v:57:y:2006:i:8:d:10.1057_palgrave.jors.2602077
    DOI: 10.1057/palgrave.jors.2602077
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2602077
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2602077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gabriel R. Bitran & Devanath Tirupati, 1988. "Multiproduct Queueing Networks with Deterministic Routing: Decomposition Approach and the Notion of Interference," Management Science, INFORMS, vol. 34(1), pages 75-100, January.
    2. Christopher D. Ittner, 1996. "Exploratory Evidence on the Behavior of Quality Costs," Operations Research, INFORMS, vol. 44(1), pages 114-130, February.
    3. Avner Engel & Miryam Barad, 2003. "A methodology for modeling VVT risks and costs," Systems Engineering, John Wiley & Sons, vol. 6(3), pages 135-151.
    4. Yacov Y. Haimes & Stan Kaplan & James H. Lambert, 2002. "Risk Filtering, Ranking, and Management Framework Using Hierarchical Holographic Modeling," Risk Analysis, John Wiley & Sons, vol. 22(2), pages 383-397, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Avner Engel & Shalom Shachar, 2006. "Measuring and optimizing systems' quality costs and project duration," Systems Engineering, John Wiley & Sons, vol. 9(3), pages 259-280, September.
    2. Avner Engel & Tyson R. Browning, 2008. "Designing systems for adaptability by means of architecture options," Systems Engineering, John Wiley & Sons, vol. 11(2), pages 125-146, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avner Engel & Shalom Shachar, 2006. "Measuring and optimizing systems' quality costs and project duration," Systems Engineering, John Wiley & Sons, vol. 9(3), pages 259-280, September.
    2. Markus Hoppe & Avner Engel & Shalom Shachar, 2007. "SysTest: Improving the verification, validation, and testing process— Assessing six industrial pilot projects," Systems Engineering, John Wiley & Sons, vol. 10(4), pages 323-347, December.
    3. Avner Engel & Miryam Barad, 2003. "A methodology for modeling VVT risks and costs," Systems Engineering, John Wiley & Sons, vol. 6(3), pages 135-151.
    4. Meir Tahan & Joseph Z. Ben‐Asher, 2005. "Modeling and analysis of integration processes for engineering systems," Systems Engineering, John Wiley & Sons, vol. 8(1), pages 62-77.
    5. Nair, Anand & Narasimhan, Ram, 2006. "Dynamics of competing with quality- and advertising-based goodwill," European Journal of Operational Research, Elsevier, vol. 175(1), pages 462-474, November.
    6. Rogerson, Ellen C. & Lambert, James H., 2012. "Prioritizing risks via several expert perspectives with application to runway safety," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 22-34.
    7. Sohner, Volkmar & Schneeweiss, Christoph, 1995. "Hierarchically integrated lot size optimization," European Journal of Operational Research, Elsevier, vol. 86(1), pages 73-90, October.
    8. Pradhan, Salil & Damodaran, Purushothaman & Srihari, Krishnaswami, 2008. "Predicting performance measures for Markovian type of manufacturing systems with product failures," European Journal of Operational Research, Elsevier, vol. 184(2), pages 725-744, January.
    9. Kumar Satyam & Ananth Krishnamurthy, 2013. "Performance analysis of CONWIP systems with batch size constraints," Annals of Operations Research, Springer, vol. 209(1), pages 85-114, October.
    10. Kris Lieckens & Nico Vandaele, 2016. "Differential evolution to solve the lot size problem in stochastic supply chain management systems," Annals of Operations Research, Springer, vol. 242(2), pages 239-263, July.
    11. Jason R. W. Merrick & Laura A. McLay, 2010. "Is Screening Cargo Containers for Smuggled Nuclear Threats Worthwhile?," Decision Analysis, INFORMS, vol. 7(2), pages 155-171, June.
    12. Madelynn R. D. Stackhouse & Robert Stewart, 2017. "Failing to Fix What is Found: Risk Accommodation in the Oil and Gas Industry," Risk Analysis, John Wiley & Sons, vol. 37(1), pages 130-146, January.
    13. Yang, Feng, 2010. "Neural network metamodeling for cycle time-throughput profiles in manufacturing," European Journal of Operational Research, Elsevier, vol. 205(1), pages 172-185, August.
    14. Ioanna Ioannou & Jaime E. Cadena & Willy Aspinall & David Lange & Daniel Honfi & Tiziana Rossetto, 2022. "Prioritization of hazards for risk and resilience management through elicitation of expert judgement," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2773-2795, July.
    15. Papadopoulos, H. T. & Heavey, C., 1996. "Queueing theory in manufacturing systems analysis and design: A classification of models for production and transfer lines," European Journal of Operational Research, Elsevier, vol. 92(1), pages 1-27, July.
    16. Morabito, Reinaldo & de Souza, Mauricio C. & Vazquez, Mariana, 2014. "Approximate decomposition methods for the analysis of multicommodity flow routing in generalized queuing networks," European Journal of Operational Research, Elsevier, vol. 232(3), pages 618-629.
    17. Kavusturucu, Ayse & Gupta, Surendra M., 1999. "Manufacturing systems with machine vacations, arbitrary topology and finite buffers," International Journal of Production Economics, Elsevier, vol. 58(1), pages 1-15, January.
    18. Andrew G. Huff & James S. Hodges & Shaun P. Kennedy & Amy Kircher, 2015. "Evaluation of the Food and Agriculture Sector Criticality Assessment Tool (FASCAT) and the Collected Data," Risk Analysis, John Wiley & Sons, vol. 35(8), pages 1448-1467, August.
    19. Barry Charles Ezell, 2007. "Infrastructure Vulnerability Assessment Model (I‐VAM)," Risk Analysis, John Wiley & Sons, vol. 27(3), pages 571-583, June.
    20. Heckmann, Iris & Comes, Tina & Nickel, Stefan, 2015. "A critical review on supply chain risk – Definition, measure and modeling," Omega, Elsevier, vol. 52(C), pages 119-132.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:57:y:2006:i:8:d:10.1057_palgrave.jors.2602077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.