IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v54y2003i1d10.1057_palgrave.jors.2601476.html
   My bibliography  Save this article

Effect of coordinated replenishment policies on quality

Author

Listed:
  • S A Starbird

    (Santa Clara University)

Abstract

Coordinated replenishment is a supply chain policy that affects many operational performance measures, including cost, lead time, and quality. In this paper, we develop a mathematical model of a simplified supply chain in which conformance quality is one of the supplier's decision variables and both the supplier and its customer are trying to minimize expected annual cost. Our expected cost model includes the important quality costs (appraisal, prevention, internal failure, and external failure) as well as holding, set-up, and ordering costs. Our results indicate that coordination leads to a decline in total cost but that coordination does not necessarily lead to an improvement in quality. In other words, buyers who are using coordinated replenishment may be trading higher quality for lower cost.

Suggested Citation

  • S A Starbird, 2003. "Effect of coordinated replenishment policies on quality," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(1), pages 32-39, January.
  • Handle: RePEc:pal:jorsoc:v:54:y:2003:i:1:d:10.1057_palgrave.jors.2601476
    DOI: 10.1057/palgrave.jors.2601476
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2601476
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2601476?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arthur F. Veinott, 1969. "Minimum Concave-Cost Solution of Leontief Substitution Models of Multi-Facility Inventory Systems," Operations Research, INFORMS, vol. 17(2), pages 262-291, April.
    2. George Tagaras & Hau L. Lee, 1996. "Economic Models for Vendor Evaluation with Quality Cost Analysis," Management Science, INFORMS, vol. 42(11), pages 1531-1543, November.
    3. Goyal, Suresh K. & Gupta, Yash P., 1989. "Integrated inventory models: The buyer-vendor coordination," European Journal of Operational Research, Elsevier, vol. 41(3), pages 261-269, August.
    4. Harvey M. Wagner & Thomson M. Whitin, 1958. "Dynamic Version of the Economic Lot Size Model," Management Science, INFORMS, vol. 5(1), pages 89-96, October.
    5. Goyal, Suresh K. & Satir, Ahmet T., 1989. "Joint replenishment inventory control: Deterministic and stochastic models," European Journal of Operational Research, Elsevier, vol. 38(1), pages 2-13, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fouad El Ouardighi & Konstantin Kogan, 2013. "Dynamic conformance and design quality in a supply chain: an assessment of contracts’ coordinating power," Annals of Operations Research, Springer, vol. 211(1), pages 137-166, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robinson, Powell & Narayanan, Arunachalam & Sahin, Funda, 2009. "Coordinated deterministic dynamic demand lot-sizing problem: A review of models and algorithms," Omega, Elsevier, vol. 37(1), pages 3-15, February.
    2. Padilla Tinoco, Silvia Valeria & Creemers, Stefan & Boute, Robert N., 2017. "Collaborative shipping under different cost-sharing agreements," European Journal of Operational Research, Elsevier, vol. 263(3), pages 827-837.
    3. Thomas C. Sharkey & Joseph Geunes & H. Edwin Romeijn & Zuo‐Jun Max Shen, 2011. "Exact algorithms for integrated facility location and production planning problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(5), pages 419-436, August.
    4. Favaretto, Daniela & Pesenti, Raffaele & Ukovich, Walter, 2001. "Discrete frequency models for inventory management - an introduction," International Journal of Production Economics, Elsevier, vol. 71(1-3), pages 331-342, May.
    5. Rizk, Nafee & Martel, Alain & Ramudhin, Amar, 2006. "A Lagrangean relaxation algorithm for multi-item lot-sizing problems with joint piecewise linear resource costs," International Journal of Production Economics, Elsevier, vol. 102(2), pages 344-357, August.
    6. Chu, Chi-Leung & Leon, V. Jorge, 2009. "Scalable methodology for supply chain inventory coordination with private information," European Journal of Operational Research, Elsevier, vol. 195(1), pages 262-279, May.
    7. Yongjian Li & Xiaoqiang Cai & Lei Xu & Wenxia Yang, 2016. "Heuristic approach on dynamic lot-sizing model for durable products with end-of-use constraints," Annals of Operations Research, Springer, vol. 242(2), pages 265-283, July.
    8. Grubbstrom, Robert W., 1995. "Modelling production opportunities -- an historical overview," International Journal of Production Economics, Elsevier, vol. 41(1-3), pages 1-14, October.
    9. Simpson, N.C., 2007. "Central versus local multiple stage inventory planning: An analysis of solutions," European Journal of Operational Research, Elsevier, vol. 181(1), pages 127-138, August.
    10. Vernon Ning Hsu, 2002. "Dynamic Capacity Expansion Problem with Deferred Expansion and Age-Dependent Shortage Cost," Manufacturing & Service Operations Management, INFORMS, vol. 4(1), pages 44-54, June.
    11. Danny Segev, 2014. "An Approximate Dynamic-Programming Approach to the Joint Replenishment Problem," Mathematics of Operations Research, INFORMS, vol. 39(2), pages 432-444, May.
    12. Grubbström, Robert W., 2014. "Cumulative staircase considerations for dynamic lotsizing when backlogging is allowed," International Journal of Production Economics, Elsevier, vol. 157(C), pages 201-211.
    13. Kimms, Alf & Drexl, Andreas, 1996. "Multi-level lot sizing: A literature survey," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 405, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    14. Khouja, Moutaz & Goyal, Suresh, 2008. "A review of the joint replenishment problem literature: 1989-2005," European Journal of Operational Research, Elsevier, vol. 186(1), pages 1-16, April.
    15. Beullens, Patrick, 2014. "Revisiting foundations in lot sizing—Connections between Harris, Crowther, Monahan, and Clark," International Journal of Production Economics, Elsevier, vol. 155(C), pages 68-81.
    16. Li, Xiuhui & Wang, Qinan, 2007. "Coordination mechanisms of supply chain systems," European Journal of Operational Research, Elsevier, vol. 179(1), pages 1-16, May.
    17. Jans, R.F. & Degraeve, Z., 2005. "Modeling Industrial Lot Sizing Problems: A Review," ERIM Report Series Research in Management ERS-2005-049-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    18. Grubbström, Robert W. & Tang, Ou, 2012. "The space of solution alternatives in the optimal lotsizing problem for general assembly systems applying MRP theory," International Journal of Production Economics, Elsevier, vol. 140(2), pages 765-777.
    19. Li, Yongjian & Chen, Jian & Cai, Xiaoqiang, 2007. "Heuristic genetic algorithm for capacitated production planning problems with batch processing and remanufacturing," International Journal of Production Economics, Elsevier, vol. 105(2), pages 301-317, February.
    20. Iara Ciurria-Infosino & Daniel Granot & Frieda Granot & Arthur F. Veinott, 2015. "Multicommodity Production Planning: Qualitative Analysis and Applications," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 589-607, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:54:y:2003:i:1:d:10.1057_palgrave.jors.2601476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.