IDEAS home Printed from https://ideas.repec.org/a/pal/jorapm/v19y2020i5d10.1057_s41272-020-00253-3.html
   My bibliography  Save this article

Improving a fuzzy neural network for predicting storage usage and calculating customer value

Author

Listed:
  • Reza Rabieyan

    (Baden-Wuerttemberg Cooperative State University)

  • Philipp Pohl

    (Baden-Wuerttemberg Cooperative State University)

Abstract

Predicting the behavior of customers plays a crucial role in the quality of resource management and customer services. In this article, a fuzzy neural network model for predicting the customer storage usage is identified. The identified fuzzy neural network is improved and finally the result of the improved fuzzy neural network is compared with some other fuzzy neural network and other prediction methods.

Suggested Citation

  • Reza Rabieyan & Philipp Pohl, 2020. "Improving a fuzzy neural network for predicting storage usage and calculating customer value," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 19(5), pages 292-301, October.
  • Handle: RePEc:pal:jorapm:v:19:y:2020:i:5:d:10.1057_s41272-020-00253-3
    DOI: 10.1057/s41272-020-00253-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41272-020-00253-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1057/s41272-020-00253-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    2. repec:bla:biomet:v:71:y:2015:i:4:p:1060-1069 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hauzenberger, Niko & Huber, Florian & Klieber, Karin & Marcellino, Massimiliano, 2025. "Bayesian neural networks for macroeconomic analysis," Journal of Econometrics, Elsevier, vol. 249(PC).
    2. Laurence T Kell & Iago Mosqueira & Henning Winker & Rishi Sharma & Toshihide Kitakado & Massimiliano Cardinale, 2024. "Empirical validation of integrated stock assessment models to ensuring risk equivalence: A pathway to resilient fisheries management," PLOS ONE, Public Library of Science, vol. 19(7), pages 1-21, July.
    3. Lucio Sarno & Giorgio Valente, 2009. "Exchange Rates and Fundamentals: Footloose or Evolving Relationship?," Journal of the European Economic Association, MIT Press, vol. 7(4), pages 786-830, June.
    4. Anatoly A. Peresetsky & Ruslan I. Yakubov, 2017. "Autocorrelation in an unobservable global trend: does it help to forecast market returns?," International Journal of Computational Economics and Econometrics, Inderscience Enterprises Ltd, vol. 7(1/2), pages 152-169.
    5. Kelly Burns & Imad Moosa, 2017. "Demystifying the Meese–Rogoff puzzle: structural breaks or measures of forecasting accuracy?," Applied Economics, Taylor & Francis Journals, vol. 49(48), pages 4897-4910, October.
    6. João C. Claudio & Katja Heinisch & Oliver Holtemöller, 2020. "Nowcasting East German GDP growth: a MIDAS approach," Empirical Economics, Springer, vol. 58(1), pages 29-54, January.
    7. Antonio Rubia & Trino-Manuel Ñíguez, 2006. "Forecasting the conditional covariance matrix of a portfolio under long-run temporal dependence," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 439-458.
    8. Athanasopoulos, George & de Carvalho Guillén, Osmani Teixeira & Issler, João Victor & Vahid, Farshid, 2011. "Model selection, estimation and forecasting in VAR models with short-run and long-run restrictions," Journal of Econometrics, Elsevier, vol. 164(1), pages 116-129, September.
    9. Yuchen Zhang & Shigeyuki Hamori, 2020. "The Predictability of the Exchange Rate When Combining Machine Learning and Fundamental Models," JRFM, MDPI, vol. 13(3), pages 1-16, March.
    10. Hao Chen & Qiulan Wan & Yurong Wang, 2014. "Refined Diebold-Mariano Test Methods for the Evaluation of Wind Power Forecasting Models," Energies, MDPI, vol. 7(7), pages 1-14, July.
    11. Antonello D’Agostino & Kieran Mcquinn & Karl Whelan, 2012. "Are Some Forecasters Really Better Than Others?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(4), pages 715-732, June.
    12. Gaglianone, Wagner Piazza & Guillén, Osmani Teixeira de Carvalho & Figueiredo, Francisco Marcos Rodrigues, 2018. "Estimating inflation persistence by quantile autoregression with quantile-specific unit roots," Economic Modelling, Elsevier, vol. 73(C), pages 407-430.
    13. Cavit Pakel & Neil Shephard & Kevin Sheppard, 2009. "Nuisance parameters, composite likelihoods and a panel of GARCH models," Economics Papers 2009-W12, Economics Group, Nuffield College, University of Oxford.
    14. Segnon, Mawuli & Gupta, Rangan & Wilfling, Bernd, 2024. "Forecasting stock market volatility with regime-switching GARCH-MIDAS: The role of geopolitical risks," International Journal of Forecasting, Elsevier, vol. 40(1), pages 29-43.
    15. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    16. Guglielmo Maria Caporale & Juncal Cuñado & Luis A. Gil-Alana, 2013. "Modelling long-run trends and cycles in financial time series data," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(3), pages 405-421, May.
    17. Jesus Crespo Cuaresma & Ines Fortin & Jaroslava Hlouskova & Michael Obersteiner, 2024. "Regime‐dependent commodity price dynamics: A predictive analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2822-2847, November.
    18. Carlo Altavilla & Paul De Grauwe, 2010. "Forecasting and combining competing models of exchange rate determination," Applied Economics, Taylor & Francis Journals, vol. 42(27), pages 3455-3480.
    19. Matsumura, Marco & Moreira, Ajax & Vicente, José, 2011. "Forecasting the yield curve with linear factor models," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 237-243.
    20. Carlo Altavilla & Raffaella Giacomini & Giuseppe Ragusa, 2017. "Anchoring the yield curve using survey expectations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1055-1068, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorapm:v:19:y:2020:i:5:d:10.1057_s41272-020-00253-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.