Artificial intelligence in marketing: a network analysis and future agenda
Author
Abstract
Suggested Citation
DOI: 10.1057/s41270-021-00143-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Duan, Yanqing & Edwards, John S. & Dwivedi, Yogesh K, 2019. "Artificial intelligence for decision making in the era of Big Data – evolution, challenges and research agenda," International Journal of Information Management, Elsevier, vol. 48(C), pages 63-71.
- Paul, Justin & Criado, Alex Rialp, 2020. "The art of writing literature review: What do we know and what do we need to know?," International Business Review, Elsevier, vol. 29(4).
- Xiao Liu & Param Vir Singh & Kannan Srinivasan, 2016. "A Structured Analysis of Unstructured Big Data by Leveraging Cloud Computing," Marketing Science, INFORMS, vol. 35(3), pages 363-388, May.
- Ghasemaghaei, Maryam & Calic, Goran, 2020. "Assessing the impact of big data on firm innovation performance: Big data is not always better data," Journal of Business Research, Elsevier, vol. 108(C), pages 147-162.
- Lismont, Jasmien & Vanthienen, Jan & Baesens, Bart & Lemahieu, Wilfried, 2017. "Defining analytics maturity indicators: A survey approach," International Journal of Information Management, Elsevier, vol. 37(3), pages 114-124.
- Choudhary, Vidyanand & Currim, Imran & Dewan, Sanjeev & Jeliazkov, Ivan & Mintz, Ofer & Turner, John, 2017. "Evaluation Set Size and Purchase: Evidence from a Product Search Engine," Journal of Interactive Marketing, Elsevier, vol. 37(C), pages 16-31.
- Gupta, Shivam & Kar, Arpan Kumar & Baabdullah, Abdullah & Al-Khowaiter, Wassan A.A., 2018. "Big data with cognitive computing: A review for the future," International Journal of Information Management, Elsevier, vol. 42(C), pages 78-89.
- Shasha Lu & Li Xiao & Min Ding, 2016. "A Video-Based Automated Recommender (VAR) System for Garments," Marketing Science, INFORMS, vol. 35(3), pages 484-510, May.
- Gielens, Katrijn & Steenkamp, Jan-Benedict E.M., 2019. "Branding in the era of digital (dis)intermediation," International Journal of Research in Marketing, Elsevier, vol. 36(3), pages 367-384.
- Vilnai-Yavetz, Iris & Tifferet, Sigal, 2015. "A Picture Is Worth a Thousand Words: Segmenting Consumers by Facebook Profile Images," Journal of Interactive Marketing, Elsevier, vol. 32(C), pages 53-69.
- Zecong Ma & Sergio Palacios, 2021. "Image-mining: exploring the impact of video content on the success of crowdfunding," Journal of Marketing Analytics, Palgrave Macmillan, vol. 9(4), pages 265-285, December.
- Dennis F. X. Mathaisel & Clare L. Comm, 2021. "Political marketing with data analytics," Journal of Marketing Analytics, Palgrave Macmillan, vol. 9(1), pages 56-64, March.
- Costa, Ana & Guerreiro, João & Moro, Sérgio & Henriques, Roberto, 2019. "Unfolding the characteristics of incentivized online reviews," Journal of Retailing and Consumer Services, Elsevier, vol. 47(C), pages 272-281.
- Michael Trusov & Liye Ma & Zainab Jamal, 2016. "Crumbs of the Cookie: User Profiling in Customer-Base Analysis and Behavioral Targeting," Marketing Science, INFORMS, vol. 35(3), pages 405-426, May.
- Koutanaei, Fatemeh Nemati & Sajedi, Hedieh & Khanbabaei, Mohammad, 2015. "A hybrid data mining model of feature selection algorithms and ensemble learning classifiers for credit scoring," Journal of Retailing and Consumer Services, Elsevier, vol. 27(C), pages 11-23.
- Verstraete, Gylian & Aghezzaf, El-Houssaine & Desmet, Bram, 2019. "A data-driven framework for predicting weather impact on high-volume low-margin retail products," Journal of Retailing and Consumer Services, Elsevier, vol. 48(C), pages 169-177.
- Aron Culotta & Jennifer Cutler, 2016. "Mining Brand Perceptions from Twitter Social Networks," Marketing Science, INFORMS, vol. 35(3), pages 343-362, May.
- Harikesh S. Nair & Sanjog Misra & William J. Hornbuckle IV & Ranjan Mishra & Anand Acharya, 2017.
"Big Data and Marketing Analytics in Gaming: Combining Empirical Models and Field Experimentation,"
Marketing Science, INFORMS, vol. 36(5), pages 699-725, September.
- Nair, Harikesh S. & Misra, Sanjog & Hornbuckle, William J., IV & Mishra, Ranjan & Acharya, Anand, 2014. "Big Data and Marketing Analytics in Gaming: Combining Empirical Models and Field Experimentation," Research Papers 3088, Stanford University, Graduate School of Business.
- Shivaji Alaparthi & Manit Mishra, 2021. "BERT: a sentiment analysis odyssey," Journal of Marketing Analytics, Palgrave Macmillan, vol. 9(2), pages 118-126, June.
- Lalicic, Lidija & Weismayer, Christian, 2021. "Consumers’ reasons and perceived value co-creation of using artificial intelligence-enabled travel service agents," Journal of Business Research, Elsevier, vol. 129(C), pages 891-901.
- Huaqiang Wu & Qionghai Dai, 2021. "Artificial intelligence accelerated by light," Nature, Nature, vol. 589(7840), pages 25-26, January.
- Ahrholdt, Dennis C. & Gudergan, Siegfried P. & Ringle, Christian M., 2019. "Enhancing loyalty: When improving consumer satisfaction and delight matters," Journal of Business Research, Elsevier, vol. 94(C), pages 18-27.
- Xueming Luo & Siliang Tong & Zheng Fang & Zhe Qu, 2019. "Frontiers: Machines vs. Humans: The Impact of Artificial Intelligence Chatbot Disclosure on Customer Purchases," Marketing Science, INFORMS, vol. 38(6), pages 937-947, November.
- Hollebeek, Linda D. & Macky, Keith, 2019. "Digital Content Marketing's Role in Fostering Consumer Engagement, Trust, and Value: Framework, Fundamental Propositions, and Implications," Journal of Interactive Marketing, Elsevier, vol. 45(C), pages 27-41.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Maria Petrescu & Anjala S. Krishen, 2023. "Mapping 2022 in Journal of Marketing Analytics: what lies ahead?," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(1), pages 1-4, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Pradeep Chintagunta & Dominique M. Hanssens & John R. Hauser, 2016. "Editorial—Marketing Science and Big Data," Marketing Science, INFORMS, vol. 35(3), pages 341-342, May.
- Bitty Balducci & Detelina Marinova, 2018. "Unstructured data in marketing," Journal of the Academy of Marketing Science, Springer, vol. 46(4), pages 557-590, July.
- Dawn Iacobucci & Maria Petrescu & Anjala Krishen & Michael Bendixen, 2019. "The state of marketing analytics in research and practice," Journal of Marketing Analytics, Palgrave Macmillan, vol. 7(3), pages 152-181, September.
- Ngai, Eric W.T. & Wu, Yuanyuan, 2022. "Machine learning in marketing: A literature review, conceptual framework, and research agenda," Journal of Business Research, Elsevier, vol. 145(C), pages 35-48.
- Sheng, Jie & Amankwah-Amoah, Joseph & Wang, Xiaojun, 2017. "A multidisciplinary perspective of big data in management research," International Journal of Production Economics, Elsevier, vol. 191(C), pages 97-112.
- Talaei-Khoei, Amir & Yang, Alan T. & Masialeti, Masialeti, 2024. "How does incorporating ChatGPT within a firm reinforce agility-mediated performance? The moderating role of innovation infusion and firms’ ethical identity," Technovation, Elsevier, vol. 132(C).
- Wang, Xin (Shane) & Ryoo, Jun Hyun (Joseph) & Bendle, Neil & Kopalle, Praveen K., 2021. "The role of machine learning analytics and metrics in retailing research," Journal of Retailing, Elsevier, vol. 97(4), pages 658-675.
- Huang, Ming-Hui & Rust, Roland T., 2022. "A Framework for Collaborative Artificial Intelligence in Marketing," Journal of Retailing, Elsevier, vol. 98(2), pages 209-223.
- Carlson, Keith & Kopalle, Praveen K. & Riddell, Allen & Rockmore, Daniel & Vana, Prasad, 2023. "Complementing human effort in online reviews: A deep learning approach to automatic content generation and review synthesis," International Journal of Research in Marketing, Elsevier, vol. 40(1), pages 54-74.
- Aracil-Jordá, Jorge & Clemente-Almendros, Jose-Antonio & Jiménez-Zarco, Ana-Isabel & González-González, Inés, 2023. "Improving the social performance of women-led microenterprises: The role of social media marketing actions," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
- Brüns, Jasper David & Meißner, Martin, 2024. "Do you create your content yourself? Using generative artificial intelligence for social media content creation diminishes perceived brand authenticity," Journal of Retailing and Consumer Services, Elsevier, vol. 79(C).
- Mustak, Mekhail & Salminen, Joni & Plé, Loïc & Wirtz, Jochen, 2021. "Artificial intelligence in marketing: Topic modeling, scientometric analysis, and research agenda," Journal of Business Research, Elsevier, vol. 124(C), pages 389-404.
- Purva Grover & Arpan Kumar Kar, 2017. "Big Data Analytics: A Review on Theoretical Contributions and Tools Used in Literature," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 18(3), pages 203-229, September.
- Ratchford, Brian & Soysal, Gonca & Zentner, Alejandro & Gauri, Dinesh K., 2022. "Online and offline retailing: What we know and directions for future research," Journal of Retailing, Elsevier, vol. 98(1), pages 152-177.
- Ning Zhong & David A. Schweidel, 2020. "Capturing Changes in Social Media Content: A Multiple Latent Changepoint Topic Model," Marketing Science, INFORMS, vol. 39(4), pages 827-846, July.
- Bazi, Saleh & Filieri, Raffaele & Gorton, Matthew, 2023. "Social media content aesthetic quality and customer engagement: The mediating role of entertainment and impacts on brand love and loyalty," Journal of Business Research, Elsevier, vol. 160(C).
- Bag, Sujoy & Tiwari, Manoj Kumar & Chan, Felix T.S., 2019. "Predicting the consumer's purchase intention of durable goods: An attribute-level analysis," Journal of Business Research, Elsevier, vol. 94(C), pages 408-419.
- Taiga Saito & Shivam Gupta, 2022. "Big data applications with theoretical models and social media in financial management," CARF F-Series CARF-F-550, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Sullivan, Yulia & Fosso Wamba, Samuel, 2024. "Artificial intelligence and adaptive response to market changes: A strategy to enhance firm performance and innovation," Journal of Business Research, Elsevier, vol. 174(C).
- Mark Anthony Camilleri & Ciro Troise, 2023. "Live support by chatbots with artificial intelligence: A future research agenda," Service Business, Springer;Pan-Pacific Business Association, vol. 17(1), pages 61-80, March.
More about this item
Keywords
Artificial intelligence; Big data; Retail; Network analysis; Systematic review;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jmarka:v:10:y:2022:i:3:d:10.1057_s41270-021-00143-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.