IDEAS home Printed from https://ideas.repec.org/a/pab/rmcpee/v17y2014i1p60-79.html
   My bibliography  Save this article

Are Multi-criteria Decision Making Techniques Useful for Solving Corporate Finance Problems? A Bibliometric Analysis || ¿Son adecuadas las técnicas de decisión multicriterio para resolver los problemas financieros corporativos? Un análisis bibliométrico

Author

Listed:
  • Guerrero-Baena, M. Dolores

    (Área de Economía Financiera y Contabilidad. Universidad de Córdoba (España))

  • Gómez-Limón, José A.

    (Área de Economía Financiera y Contabilidad. Universidad de Córdoba (España))

  • Fruet Cardozo, J. Vicente

    (Área de Economía Financiera y Contabilidad. Universidad de Córdoba (España))

Abstract

Corporate financial decision making processes (selection of investments and funding sources) are becoming increasingly complex because of the growing number of conflicting criteria that need to be considered. The main aim of this paper is to perform a bibliometric analysis of the international research on the application of multi-criteria decision making (MCDM) techniques to corporate finance issues during the period 1980-2012. A total of 347 publications from the Scopus database have been compiled, classified and analysed. The results obtained confirm: a) an increase in the importance of MCDM in corporate finance; b) the relevance of MCDM techniques in capital budgeting processes (fixed assets investment) and in the assessment of firms' economic and financial performance; c) the techniques based on the multiple attribute utility theory (MAUT) are the most popular in complex decision making situations as they are very simple to implement. || Los procesos de decisión de selección de inversiones y de las fuentes de financiación de las empresas se caracterizan por una creciente complejidad, dada la confluencia del cada vez mayor número de criterios a considerar. El objetivo de este trabajo es realizar un análisis bibliométrico de la producción científica internacional que ha abordado la problemática asociada a las finanzas corporativas mediante la implementación del paradigma de Decisión Multicriterio (MCDM) durante el periodo 1980-2012. Un total de 347 publicaciones han sido recopiladas de la base de datos de Scopus, clasificadas y analizadas. De los resultados obtenidos cabe destacar lo siguiente: a) se ha producido un considerable incremento del uso de las técnicas multicriterio en finanzas corporativas; b) las técnicas MCDM se han empleado fundamentalmente en la selección de inversiones productivas, evidenciándose igualmente su utilidad para la evaluación de la situación económico-financiera de las empresas; c) las técnicas basadas en la teoría de la utilidad multiatributo (MAUT) han sido las más empleadas, dada su relativa sencillez operativa.

Suggested Citation

  • Guerrero-Baena, M. Dolores & Gómez-Limón, José A. & Fruet Cardozo, J. Vicente, 2014. "Are Multi-criteria Decision Making Techniques Useful for Solving Corporate Finance Problems? A Bibliometric Analysis || ¿Son adecuadas las técnicas de decisión multicriterio para resolver los problema," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 17(1), pages 60-79, June.
  • Handle: RePEc:pab:rmcpee:v:17:y:2014:i:1:p:60-79
    as

    Download full text from publisher

    File URL: http://www.upo.es/RevMetCuant/pdf/vol17/art89.pdf
    Download Restriction: no

    File URL: http://www.upo.es/RevMetCuant/bibtex.php?id=89
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. Charnes & W. W. Cooper & R. O. Ferguson, 1955. "Optimal Estimation of Executive Compensation by Linear Programming," Management Science, INFORMS, vol. 1(2), pages 138-151, January.
    2. Michael Doumpos & Fotios Pasiouras, 2005. "Developing and Testing Models for Replicating Credit Ratings: A Multicriteria Approach," Computational Economics, Springer;Society for Computational Economics, vol. 25(4), pages 327-341, June.
    3. Aghaei Chadegani, Arezoo & Salehi, Hadi & Md Yunus, Melor & Farhadi, Hadi & Fooladi, Masood & Farhadi, Maryam & Ale Ebrahim, Nader, 2013. "A Comparison between Two Main Academic Literature Collections: Web of Science and Scopus Databases," MPRA Paper 46898, University Library of Munich, Germany, revised 18 Mar 2013.
    4. Chiang Chun-Hao & Yang Jian-Min, 2012. "A bibliometric study of financial risk literature: a historic approach," Applied Economics, Taylor & Francis Journals, vol. 44(22), pages 2827-2839, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Collins C. Okolie & Abiodun A. Ogundeji, 2022. "Effect of COVID-19 on agricultural production and food security: A scientometric analysis," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-13, December.
    2. Baker, H. Kent & Kumar, Satish & Pattnaik, Debidutta, 2021. "Twenty-five years of the Journal of Corporate Finance: A scientometric analysis," Journal of Corporate Finance, Elsevier, vol. 66(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wojtek Michalowski & Włodzimierz Ogryczak, 2001. "Extending the MAD portfolio optimization model to incorporate downside risk aversion," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(3), pages 185-200, April.
    2. Kadziński, MiŁosz & Greco, Salvatore & SŁowiński, Roman, 2012. "Extreme ranking analysis in robust ordinal regression," Omega, Elsevier, vol. 40(4), pages 488-501.
    3. Thomas L. Saaty, 2013. "The Modern Science of Multicriteria Decision Making and Its Practical Applications: The AHP/ANP Approach," Operations Research, INFORMS, vol. 61(5), pages 1101-1118, October.
    4. Massimiliano M. Pellegrini & Riccardo Rialti & Giacomo Marzi & Andrea Caputo, 2020. "Sport entrepreneurship: A synthesis of existing literature and future perspectives," International Entrepreneurship and Management Journal, Springer, vol. 16(3), pages 795-826, September.
    5. Yanagida, John F. & Book, Don N., 1984. "Application of the Least Absolute Value Technique as a Data Filter for Detecting Structural Change in the Demand for Meat," Northeastern Journal of Agricultural and Resource Economics, Northeastern Agricultural and Resource Economics Association, vol. 0(Number 1), pages 1-5, April.
    6. Hamalainen, Raimo P. & Mantysaari, Juha, 2002. "Dynamic multi-objective heating optimization," European Journal of Operational Research, Elsevier, vol. 142(1), pages 1-15, October.
    7. Afful-Dadzie, Eric & Afful-Dadzie, Anthony, 2017. "Liberation of public data: Exploring central themes in open government data and freedom of information research," International Journal of Information Management, Elsevier, vol. 37(6), pages 664-672.
    8. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    9. Demirci, Mehmet & Bettinger, Pete, 2015. "Using mixed integer multi-objective goal programming for stand tending block designation: A case study from Turkey," Forest Policy and Economics, Elsevier, vol. 55(C), pages 28-36.
    10. Tsai, Wen-Hsien & Hsu, Jui-Ling, 2008. "Corporate social responsibility programs choice and costs assessment in the airline industry—A hybrid model," Journal of Air Transport Management, Elsevier, vol. 14(4), pages 188-196.
    11. Fatemeh Ghandi & Mostafa Davtalab-Olyaie & Masoud Asgharian, 2024. "Peer-evaluation in centrally managed systems," Annals of Operations Research, Springer, vol. 333(1), pages 439-459, February.
    12. Glover, Fred & Sueyoshi, Toshiyuki, 2009. "Contributions of Professor William W. Cooper in Operations Research and Management Science," European Journal of Operational Research, Elsevier, vol. 197(1), pages 1-16, August.
    13. Koenker, Roger & Park, Beum J., 1996. "An interior point algorithm for nonlinear quantile regression," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 265-283.
    14. Grigoroudis, Evangelos & Noel, Laurent & Galariotis, Emilios & Zopounidis, Constantin, 2021. "An ordinal regression approach for analyzing consumer preferences in the art market," European Journal of Operational Research, Elsevier, vol. 290(2), pages 718-733.
    15. J González-Pachón & C Romero, 2006. "An analytical framework for aggregating multiattribute utility functions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(10), pages 1241-1247, October.
    16. Sueyoshi, Toshiyuki, 2006. "DEA-Discriminant Analysis: Methodological comparison among eight discriminant analysis approaches," European Journal of Operational Research, Elsevier, vol. 169(1), pages 247-272, February.
    17. Parul Khurana & Kiran Sharma, 2022. "Impact of h-index on author’s rankings: an improvement to the h-index for lower-ranked authors," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(8), pages 4483-4498, August.
    18. Mehmet Hakan Satman, 2022. "Teaching the Median with Terms of Absolute Value, Differentiability, and Optimization," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 10(1), pages 41-50, June.
    19. Katia A. Figueroa-Rodríguez & Francisco Hernández-Rosas & Benjamín Figueroa-Sandoval & Joel Velasco-Velasco & Noé Aguilar Rivera, 2019. "What Has Been the Focus of Sugarcane Research? A Bibliometric Overview," IJERPH, MDPI, vol. 16(18), pages 1-15, September.
    20. Zhenhua Chen & Laurie A. Schintler, 2023. "Rediscovering regional science: Positioning the field's evolving location in science and society," Journal of Regional Science, Wiley Blackwell, vol. 63(3), pages 617-642, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • G30 - Financial Economics - - Corporate Finance and Governance - - - General
    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pab:rmcpee:v:17:y:2014:i:1:p:60-79. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Publicación Digital - UPO (email available below). General contact details of provider: https://edirc.repec.org/data/dmupoes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.