IDEAS home Printed from https://ideas.repec.org/a/oup/scippl/v48y2021i6p849-859..html
   My bibliography  Save this article

Rejecting acceptance: learning from public dialogue on self-driving vehicles
[Crowdsourcing Moral Machines]

Author

Listed:
  • Jack Stilgoe
  • Tom Cohen

Abstract

The investment and excitement surrounding self-driving vehicles are huge. We know from earlier transport innovations that technological transitions can reshape lives, livelihoods, and places in profound ways. There is therefore a case for wide democratic debate, but how should this take place? In this paper, we explore the tensions between democratic experiments and technological ones with a focus on policy for nascent self-driving/automated vehicles. We describe a dominant model of public engagement that imagines increased public awareness leading to acceptance and then adoption of the technology. We explore the flaws in this model, particularly in how it treats members of the public as users rather than citizens and the presumption that the technology is well-defined. Analysing two large public dialogue exercises in which we were involved, our conclusion is that public dialogue can contribute to shifting established ideas about both technologies and the public, but that this reframing demands openness on the part of policymakers and other stakeholders. Rather than seeing public dialogues as individual exercises, it would be better to evaluate the governance of emerging technologies in terms of whether it takes place ‘in dialogue’.

Suggested Citation

  • Jack Stilgoe & Tom Cohen, 2021. "Rejecting acceptance: learning from public dialogue on self-driving vehicles [Crowdsourcing Moral Machines]," Science and Public Policy, Oxford University Press, vol. 48(6), pages 849-859.
  • Handle: RePEc:oup:scippl:v:48:y:2021:i:6:p:849-859.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/scipol/scab060
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wustenhagen, Rolf & Wolsink, Maarten & Burer, Mary Jean, 2007. "Social acceptance of renewable energy innovation: An introduction to the concept," Energy Policy, Elsevier, vol. 35(5), pages 2683-2691, May.
    2. Dimitris Milakis, 2019. "Long-term implications of automated vehicles: an introduction," Transport Reviews, Taylor & Francis Journals, vol. 39(1), pages 1-8, January.
    3. Bergman, Noam & Schwanen, Tim & Sovacool, Benjamin K., 2017. "Imagined people, behaviour and future mobility: Insights from visions of electric vehicles and car clubs in the United Kingdom," Transport Policy, Elsevier, vol. 59(C), pages 165-173.
    4. Goulden, Murray & Ryley, Tim & Dingwall, Robert, 2014. "Beyond ‘predict and provide’: UK transport, the growth paradigm and climate change," Transport Policy, Elsevier, vol. 32(C), pages 139-147.
    5. Lovelace, Robin & Parkin, John & Cohen, Tom, 2020. "Open access transport models: A leverage point in sustainable transport planning," Transport Policy, Elsevier, vol. 97(C), pages 47-54.
    6. Shove, Elizabeth, 1998. "Gaps, barriers and conceptual chasms: theories of technology transfer and energy in buildings," Energy Policy, Elsevier, vol. 26(15), pages 1105-1112, December.
    7. Azim Shariff & Jean-François Bonnefon & Iyad Rahwan, 2017. "Psychological roadblocks to the adoption of self-driving vehicles," Nature Human Behaviour, Nature, vol. 1(10), pages 694-696, October.
    8. Juma, Calestous, 2016. "Innovation and Its Enemies: Why People Resist New Technologies," OUP Catalogue, Oxford University Press, number 9780190467036.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kenesei, Zsófia & Ásványi, Katalin & Kökény, László & Jászberényi, Melinda & Miskolczi, Márk & Gyulavári, Tamás & Syahrivar, Jhanghiz, 2022. "Trust and perceived risk: How different manifestations affect the adoption of autonomous vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 164(C), pages 379-393.
    2. Chris Foulds & Sarah Royston & Thomas Berker & Efi Nakopoulou & Zareen Pervez Bharucha & Rosie Robison & Simone Abram & Branko Ančić & Stathis Arapostathis & Gabriel Badescu & Richard Bull & Jed Cohen, 2022. "An agenda for future Social Sciences and Humanities research on energy efficiency: 100 priority research questions," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-18, December.
    3. Devon McAslan & Farah Najar Arevalo & David A. King & Thaddeus R. Miller, 2021. "Pilot project purgatory? Assessing automated vehicle pilot projects in U.S. cities," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-16, December.
    4. Smith, Angela & Dickinson, Janet E. & Marsden, Greg & Cherrett, Tom & Oakey, Andrew & Grote, Matt, 2022. "Public acceptance of the use of drones for logistics: The state of play and moving towards more informed debate," Technology in Society, Elsevier, vol. 68(C).
    5. Jack Stilgoe & Miloš Mladenović, 2022. "The politics of autonomous vehicles," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-6, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lyhne, Ivar & Aaen, Sara Bjørn & Nielsen, Helle & Kørnøv, Lone & Larsen, Sanne Vammen, 2018. "Citizens’ self-mobilization, motivational factors, and the group of most engaged citizens: The case of a radioactive waste repository in Denmark," Land Use Policy, Elsevier, vol. 72(C), pages 433-442.
    2. Hogan, Jessica L. & Warren, Charles R. & Simpson, Michael & McCauley, Darren, 2022. "What makes local energy projects acceptable? Probing the connection between ownership structures and community acceptance," Energy Policy, Elsevier, vol. 171(C).
    3. Lindgren, Thomas & Pink, Sarah & Fors, Vaike, 2021. "Fore-sighting autonomous driving - An Ethnographic approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    4. Ioannidis, Romanos & Koutsoyiannis, Demetris, 2020. "A review of land use, visibility and public perception of renewable energy in the context of landscape impact," Applied Energy, Elsevier, vol. 276(C).
    5. Kaufmann, Nicholas & Carolus, Thomas & Starzmann, Ralf, 2019. "Turbines for modular tidal current energy converters," Renewable Energy, Elsevier, vol. 142(C), pages 451-460.
    6. P.W.J. de Bijl & Helanya Fourie, 2019. "The energy transition: Does ownership matter for realizing public interest objectives?," Working Papers 19-24, Utrecht School of Economics.
    7. Dugstad, Anders & Grimsrud, Kristine & Kipperberg, Gorm & Lindhjem, Henrik & Navrud, Ståle, 2020. "Acceptance of wind power development and exposure – Not-in-anybody's-backyard," Energy Policy, Elsevier, vol. 147(C).
    8. Vringer, Kees & Carabain, Christine L., 2020. "Measuring the legitimacy of energy transition policy in the Netherlands," Energy Policy, Elsevier, vol. 138(C).
    9. Dey, Subhashish & Sreenivasulu, Anduri & Veerendra, G.T.N. & Rao, K. Venkateswara & Babu, P.S.S. Anjaneya, 2022. "Renewable energy present status and future potentials in India: An overview," Innovation and Green Development, Elsevier, vol. 1(1).
    10. Gottschamer, L. & Zhang, Q., 2016. "Interactions of factors impacting implementation and sustainability of renewable energy sourced electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 164-174.
    11. Briguglio, Marie & Formosa, Glenn, 2017. "When households go solar: Determinants of uptake of a Photovoltaic Scheme and policy insights," Energy Policy, Elsevier, vol. 108(C), pages 154-162.
    12. David Gibbs & Kirstie O'Neill, 2014. "Rethinking Sociotechnical Transitions and Green Entrepreneurship: The Potential for Transformative Change in the Green Building Sector," Environment and Planning A, , vol. 46(5), pages 1088-1107, May.
    13. Burghard, Uta & Breitschopf, Barbara & Wohlfarth, Katharina & Müller, Fabian & Keil, Julia, 2021. "Perception of monetary and non-monetary effects on the energy transition: Results of a mixed method approach," Working Papers "Sustainability and Innovation" S04/2021, Fraunhofer Institute for Systems and Innovation Research (ISI).
    14. Okkonen, Lasse & Lehtonen, Olli, 2016. "Socio-economic impacts of community wind power projects in Northern Scotland," Renewable Energy, Elsevier, vol. 85(C), pages 826-833.
    15. Du, Hua & Han, Qi & de Vries, Bauke & Sun, Jun, 2024. "Community solar PV adoption in residential apartment buildings: A case study on influencing factors and incentive measures in Wuhan," Applied Energy, Elsevier, vol. 354(PA).
    16. Frank, Alejandro Germán & Gerstlberger, Wolfgang & Paslauski, Carolline Amaral & Lerman, Laura Visintainer & Ayala, Néstor Fabián, 2018. "The contribution of innovation policy criteria to the development of local renewable energy systems," Energy Policy, Elsevier, vol. 115(C), pages 353-365.
    17. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
    18. Olivia Muza & Ramit Debnath, 2020. "Socially inclusive renewable energy transition in sub-Saharan Africa: A social shaping of technology analysis of appliance uptake in Rwanda," Working Papers EPRG2017, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    19. Frate, Claudio Albuquerque & Brannstrom, Christian, 2017. "Stakeholder subjectivities regarding barriers and drivers to the introduction of utility-scale solar photovoltaic power in Brazil," Energy Policy, Elsevier, vol. 111(C), pages 346-352.
    20. Baharoon, Dhyia Aidroos & Rahman, Hasimah Abdul & Fadhl, Saeed Obaid, 2016. "Publics׳ knowledge, attitudes and behavioral toward the use of solar energy in Yemen power sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 498-515.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:scippl:v:48:y:2021:i:6:p:849-859.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/spp .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.