IDEAS home Printed from https://ideas.repec.org/a/oup/ajagec/v88y2006i3p742-749.html
   My bibliography  Save this article

A Sample Selection Approach to Censored Demand Systems

Author

Listed:
  • Steven T. Yen
  • Biing-Hwan Lin

Abstract

The multivariate sample selection model is extended to a nonlinear equation system with partial selection and applied to household meat consumption in China. Elasticity estimates differ from those obtained from conventional maximum likelihood and Tobit estimates. Chinese meat products are gross complements while net substitution also exists in some cases. Copyright 2006, Oxford University Press.

Suggested Citation

  • Steven T. Yen & Biing-Hwan Lin, 2006. "A Sample Selection Approach to Censored Demand Systems," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(3), pages 742-749.
  • Handle: RePEc:oup:ajagec:v:88:y:2006:i:3:p:742-749
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1467-8276.2006.00892.x
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Wales, T. J. & Woodland, A. D., 1983. "Estimation of consumer demand systems with binding non-negativity constraints," Journal of Econometrics, Elsevier, vol. 21(3), pages 263-285, April.
    2. J. Scott Shonkwiler & Steven T. Yen, 1999. "Two-Step Estimation of a Censored System of Equations," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(4), pages 972-982.
    3. Heien, Dale & Wessells, Cathy Roheim, 1990. "Demand Systems Estimation with Microdata: A Censored Regression Approach," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(3), pages 365-371, July.
    4. Vassilis A. Hajivassiliou, 1991. "Simulation Estimation Methods for Limited Dependent Variable Models," Cowles Foundation Discussion Papers 1007, Cowles Foundation for Research in Economics, Yale University.
    5. Federico Perali & Jean-Paul Chavas, 2000. "Estimation of Censored Demand Equations from Large Cross-Section Data," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 82(4), pages 1022-1037.
    6. Lee, Lung-Fei & Pitt, Mark M, 1986. "Microeconometric Demand Systems with Binding Nonnegativity Constraints: The Dual Approach," Econometrica, Econometric Society, vol. 54(5), pages 1237-1242, September.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ajagec:v:88:y:2006:i:3:p:742-749. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/aaeaaea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.