IDEAS home Printed from https://ideas.repec.org/a/oec/stdkaa/5l9k5d21hff5.html
   My bibliography  Save this article

Quantifying Inflation Expectations with the Carlson-Parkin Method: A Survey-based Determination of the Just Noticeable Difference

Author

Listed:
  • Steffen Henzel

    ()

  • Timo Wollmershäuser

    ()

Abstract

This paper presents a new methodology for the quantification of qualitative survey data. Traditional conversion methods, such as the probability approach of Carlson and Parkin (1975) or the time-varying parameters model of Seitz (1988), require very restrictive assumptions concerning the expectations formation process of survey respondents. Above all, the unbiasedness of expectations, which is a necessary condition for rationality, is imposed. Our approach avoids this assumptions. The novelty lies in the way the boundaries inside of which survey respondents expect the variable under consideration to remain unchanged are determined. Instead of deriving these boundaries from the statistical properties of the reference time-series (which necessitates the unbiasedness assumption), we directly queried them from survey respondents by a special question in the Ifo World Economic Survey. The new methodology is then applied to expectations about the future development of inflation obtained from the Ifo World Economic Survey.

Suggested Citation

  • Steffen Henzel & Timo Wollmershäuser, 2006. "Quantifying Inflation Expectations with the Carlson-Parkin Method: A Survey-based Determination of the Just Noticeable Difference," Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2005(3), pages 321-352.
  • Handle: RePEc:oec:stdkaa:5l9k5d21hff5
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1787/jbcma-v2005-art8-en
    Download Restriction: Full text available to READ online. PDF download available to OECD iLibrary subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Forni, Mario & Lippi, Marco, 2001. "The Generalized Dynamic Factor Model: Representation Theory," Econometric Theory, Cambridge University Press, vol. 17(06), pages 1113-1141, December.
    2. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    3. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    4. Altissimo, Filippo & Bassanetti, Antonio & Cristadoro, Riccardo & Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia & Veronese, Giovanni, 2001. "EuroCOIN: A Real Time Coincident Indicator of the Euro Area Business Cycle," CEPR Discussion Papers 3108, C.E.P.R. Discussion Papers.
    5. Arthur F. Burns & Wesley C. Mitchell, 1946. "Measuring Business Cycles," NBER Books, National Bureau of Economic Research, Inc, number burn46-1, January.
    6. Victor Zarnowitz, 1992. "Business Cycles: Theory, History, Indicators, and Forecasting," NBER Books, National Bureau of Economic Research, Inc, number zarn92-1, January.
    7. Gerhard Bry & Charlotte Boschan, 1971. "Foreword to "Cyclical Analysis of Time Series: Selected Procedures and Computer Programs"," NBER Chapters,in: Cyclical Analysis of Time Series: Selected Procedures and Computer Programs, pages -1 National Bureau of Economic Research, Inc.
    8. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    9. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    10. Filippo Altissimo & Antonio Bassanetti & Riccardo Cristadoro & Mario Forni & Marco Lippi & Lucrezia Reichlin & Giovanni Veronese, 2001. "A real time coincident indicator of the euro area business cycle," Temi di discussione (Economic working papers) 436, Bank of Italy, Economic Research and International Relations Area.
    11. Gonzalo Camba-Mendez & George Kapetanios & Richard J. Smith & Martin R. Weale, 2001. "An automatic leading indicator of economic activity: forecasting GDP growth for European countries," Econometrics Journal, Royal Economic Society, vol. 4(1), pages 1-37.
    12. Thomas J. Sargent & Christopher A. Sims, 1977. "Business cycle modeling without pretending to have too much a priori economic theory," Working Papers 55, Federal Reserve Bank of Minneapolis.
    13. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    14. Gerhard Bry & Charlotte Boschan, 1971. "Cyclical Analysis of Time Series: Selected Procedures and Computer Programs," NBER Books, National Bureau of Economic Research, Inc, number bry_71-1, January.
    15. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters,in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409 National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ullrich, Katrin, 2008. "Inflation expectations of experts and ECB communication," The North American Journal of Economics and Finance, Elsevier, vol. 19(1), pages 93-108, March.
    2. Christian Seiler, 2012. "On the Robustness of the Balance Statistics with respect to Nonresponse," ifo Working Paper Series 126, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    3. Christian Seiler, 2013. "Nonresponse in Business Tendency Surveys: Theoretical Discourse and Empirical Evidence," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 52.
    4. Henzel, Steffen & Wollmershäuser, Timo, 2008. "The New Keynesian Phillips curve and the role of expectations: Evidence from the CESifo World Economic Survey," Economic Modelling, Elsevier, vol. 25(5), pages 811-832, September.
    5. Ziegler, Christina, 2012. "Monetary policy under alternative exchange rate regimes in Central and Eastern Europe," Working Papers 104, University of Leipzig, Faculty of Economics and Management Science.
    6. Steffen Henzel & Timo Wollmershäuser, 2006. "The New Keynesian Phillips Curve and the Role of Expectations: Evidence from the Ifo World Economic Survey," CESifo Working Paper Series 1694, CESifo Group Munich.
    7. Werner Hölzl & Gerhard Schwarz, 2014. "The "WIFO-Konjunkturtest": Methodology and Forecast Characteristics of the WIFO Business Cycle Survey," WIFO Monatsberichte (monthly reports), WIFO, vol. 87(12), pages 835-850, December.
    8. Christian Seiler, 2015. "On the robustness of balance statistics with respect to nonresponse," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, pages 45-62.
    9. Jürgen Bierbaumer-Polly & Werner Hölzl, 2016. "Business Cycle Dynamics and Firm Heterogeneity. Evidence for Austria Using Survey Data," WIFO Working Papers 504, WIFO.
    10. Thomas Maag, 2009. "On the accuracy of the probability method for quantifying beliefs about inflation," KOF Working papers 09-230, KOF Swiss Economic Institute, ETH Zurich.
    11. Henry Sabrowski, 2008. "Inflation Expectation Formation of German Consumers: Rational or Adaptive?," Working Paper Series in Economics 100, University of Lüneburg, Institute of Economics.
    12. Kajal Lahiri & Yongchen Zhao, 2013. "Quantifying Heterogeneous Survey Expectations: The Carlson-Parkin Method Revisited," Discussion Papers 13-08, University at Albany, SUNY, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oec:stdkaa:5l9k5d21hff5. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/oecddfr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.