IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62983-5.html
   My bibliography  Save this article

Plausible global emissions scenario for 2 °C aligned with China’s net-zero pathway

Author

Listed:
  • Junting Zhong

    (Chinese Academy of Meteorological Sciences
    Henan University)

  • Xiaoye Zhang

    (Chinese Academy of Meteorological Sciences
    Henan University)

  • Da Zhang

    (Henan University
    Tsinghua University
    Tsinghua University)

  • Deying Wang

    (Chinese Academy of Meteorological Sciences)

  • Lifeng Guo

    (Chinese Academy of Meteorological Sciences)

  • Hantang Peng

    (Tsinghua University)

  • Xiaodan Huang

    (Tsinghua University)

  • Zhili Wang

    (Chinese Academy of Meteorological Sciences)

  • Yadong Lei

    (Chinese Academy of Meteorological Sciences)

  • Yixiong Lu

    (China Meteorological Administration)

  • Chenfei Qu

    (Tsinghua University)

  • Xiliang Zhang

    (Henan University
    Tsinghua University
    Tsinghua University)

  • Changhong Miao

    (Henan University)

Abstract

Due to sizeable anthropogenic CO2 emissions, China’s transition towards carbon neutrality will reshape global CO2 emissions, offering insights into warming levels, extreme events, overshoot, tipping points, and regional climate impacts. Here we develop an interdisciplinary and multi-model framework integrating up-to-date emissions inventory and China’s net-zero pathway to construct a reality-aligned, sector-specific combined scenario (SSP2-com) for greenhouse gases and air pollutants across global-to-regional, national-to-provincial, and multi-resolution-grid scales. SSP2-com projects CO₂ peaking in concentration globally by 2062, and achieving net-zero emissions by 2072, driven by Asia-Pacific—particularly China—via energy and industrial reductions. Climate emulators show global temperatures initially track SSP2-4.5 but later diverge onto a distinct trajectory, reaching 2.01 °C by 2100 ( ~ 3.2 Watt m⁻²) and dropping below 2 °C within the first post-2100 decade, relevant to the Paris Agreement target. We further propose an evolving SSP2-com+ framework with updated trajectories to enhance timely alignment and cooperation. Our findings indicate balanced, nationally-determined decarbonization can stabilize warming near 2 °C without early unprecedented decarbonization rates or large-scale carbon removal, aligning better with current status and commitments for more plausible Earth system model inputs.

Suggested Citation

  • Junting Zhong & Xiaoye Zhang & Da Zhang & Deying Wang & Lifeng Guo & Hantang Peng & Xiaodan Huang & Zhili Wang & Yadong Lei & Yixiong Lu & Chenfei Qu & Xiliang Zhang & Changhong Miao, 2025. "Plausible global emissions scenario for 2 °C aligned with China’s net-zero pathway," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62983-5
    DOI: 10.1038/s41467-025-62983-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62983-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62983-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Piers M. Forster & Harriet I. Forster & Mat J. Evans & Matthew J. Gidden & Chris D. Jones & Christoph A. Keller & Robin D. Lamboll & Corinne Le Quéré & Joeri Rogelj & Deborah Rosen & Carl-Friedrich Sc, 2020. "Current and future global climate impacts resulting from COVID-19," Nature Climate Change, Nature, vol. 10(10), pages 913-919, October.
    2. Richard H. Moss & Jae A. Edmonds & Kathy A. Hibbard & Martin R. Manning & Steven K. Rose & Detlef P. van Vuuren & Timothy R. Carter & Seita Emori & Mikiko Kainuma & Tom Kram & Gerald A. Meehl & John F, 2010. "The next generation of scenarios for climate change research and assessment," Nature, Nature, vol. 463(7282), pages 747-756, February.
    3. Carl-Friedrich Schleussner & Gaurav Ganti & Quentin Lejeune & Biqing Zhu & Peter Pfleiderer & Ruben Prütz & Philippe Ciais & Thomas L. Frölicher & Sabine Fuss & Thomas Gasser & Matthew J. Gidden & Cha, 2024. "Overconfidence in climate overshoot," Nature, Nature, vol. 634(8033), pages 366-373, October.
    4. Piers M. Forster & Harriet I. Forster & Mat J. Evans & Matthew J. Gidden & Chris D. Jones & Christoph A. Keller & Robin D. Lamboll & Corinne Le Quéré & Joeri Rogelj & Deborah Rosen & Carl-Friedrich Sc, 2020. "Publisher Correction: Current and future global climate impacts resulting from COVID-19," Nature Climate Change, Nature, vol. 10(10), pages 971-971, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Böhm & Mirco Nanni & Luca Pappalardo, 2022. "Gross polluters and vehicle emissions reduction," Nature Sustainability, Nature, vol. 5(8), pages 699-707, August.
    2. Liu, Li-Jing & Yao, Yun-Fei & Liang, Qiao-Mei & Qian, Xiang-Yan & Xu, Chun-Lei & Wei, Si-Yi & Creutzig, Felix & Wei, Yi-Ming, 2021. "Combining economic recovery with climate change mitigation: A global evaluation of financial instruments," Economic Analysis and Policy, Elsevier, vol. 72(C), pages 438-453.
    3. Grinin, Leonid & Grinin, Anton & Korotayev, Andrey, 2022. "COVID-19 pandemic as a trigger for the acceleration of the cybernetic revolution, transition from e-government to e-state, and change in social relations," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    4. Förster, Robert & Kaiser, Matthias & Wenninger, Simon, 2023. "Future vehicle energy supply - sustainable design and operation of hybrid hydrogen and electric microgrids," Applied Energy, Elsevier, vol. 334(C).
    5. Cassetti, Gabriele & Boitier, Baptiste & Elia, Alessia & Le Mouël, Pierre & Gargiulo, Maurizio & Zagamé, Paul & Nikas, Alexandros & Koasidis, Konstantinos & Doukas, Haris & Chiodi, Alessandro, 2023. "The interplay among COVID-19 economic recovery, behavioural changes, and the European Green Deal: An energy-economic modelling perspective," Energy, Elsevier, vol. 263(PC).
    6. Yang Yang & Lili Ren & Mingxuan Wu & Hailong Wang & Fengfei Song & L. Ruby Leung & Xin Hao & Jiandong Li & Lei Chen & Huimin Li & Liangying Zeng & Yang Zhou & Pinya Wang & Hong Liao & Jing Wang & Zhen, 2022. "Abrupt emissions reductions during COVID-19 contributed to record summer rainfall in China," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    7. Ilan Noy & Tomáš Uher, 2022. "Economic consequences of pre-COVID-19 epidemics: a literature review," Chapters, in: Mark Skidmore (ed.), Handbook on the Economics of Disasters, chapter 7, pages 117-133, Edward Elgar Publishing.
    8. Ding, Qian & Huang, Jianbai & Chen, Jinyu & Luo, Xianfeng, 2024. "Climate warming, renewable energy consumption and rare earth market: Evidence from the United States," Energy, Elsevier, vol. 290(C).
    9. Zhao, Congyu & Zhai, Xuan & Tao, Miaomiao & Che, Shuai, 2024. "Enlarged scars: The effects of economic policy uncertainty on electricity accessibility and urban-rural disparity," Utilities Policy, Elsevier, vol. 91(C).
    10. Avgousti, Aris & Caprioli, Francesco & Caracciolo, Giacomo & Cochard, Marion & Dallari, Pietro & Delgado-Téllez, Mar & Domingues, João & Ferdinandusse, Marien & Filip, Daniela & Nerlich, Carolin & Pra, 2023. "The climate change challenge and fiscal instruments and policies in the EU," Occasional Paper Series 315, European Central Bank.
    11. Förster, Robert & Harding, Sebastian & Buhl, Hans Ulrich, 2024. "Unleashing the economic and ecological potential of energy flexibility: Attractiveness of real-time electricity tariffs in energy crises," Energy Policy, Elsevier, vol. 185(C).
    12. Wiethe, Christian & Wenninger, Simon, 2023. "The influence of building energy performance prediction accuracy on retrofit rates," Energy Policy, Elsevier, vol. 177(C).
    13. Linyi Wei & Zheng Lu & Yong Wang & Xiaohong Liu & Weiyi Wang & Chenglai Wu & Xi Zhao & Stefan Rahimi & Wenwen Xia & Yiquan Jiang, 2022. "Black carbon-climate interactions regulate dust burdens over India revealed during COVID-19," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Philippe Le Billon & Païvi Lujala & Devyani Singh & Vance Culbert & Berit Kristoffersen, 2021. "Fossil fuels, climate change, and the COVID-19 crisis: pathways for a just and green post-pandemic recovery," Climate Policy, Taylor & Francis Journals, vol. 21(10), pages 1347-1356, November.
    15. O'Garra, Tanya & Fouquet, Roger, 2022. "Willingness to reduce travel consumption to support a low-carbon transition beyond COVID-19," Ecological Economics, Elsevier, vol. 193(C).
    16. Tian, Jinfang & Yu, Longguang & Xue, Rui & Zhuang, Shan & Shan, Yuli, 2022. "Global low-carbon energy transition in the post-COVID-19 era," Applied Energy, Elsevier, vol. 307(C).
    17. Wang, Xue-Chao & Jiang, Peng & Yang, Lan & Fan, Yee Van & Klemeš, Jiří Jaromír & Wang, Yutao, 2021. "Extended water-energy nexus contribution to environmentally-related sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    18. Konhäuser, Koray & Werner, Tim, 2024. "Uncovering the financial impact of energy-efficient building characteristics with eXplainable artificial intelligence," Applied Energy, Elsevier, vol. 374(C).
    19. Joanna Brzyska & Izabela Szamrej-Baran, 2023. "The COVID-19 Pandemic and the Implementation of Sustainable Development Goals: The EU Perspective," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    20. Nerea Portillo Juan & Vicente Negro Valdecantos & Javier Olalde Rodríguez & Gregorio Iglesias, 2024. "Environmental Policy vs. the Reality of Greenhouse Gas Emissions from Top Emitting Countries," Energies, MDPI, vol. 17(22), pages 1-25, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62983-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.