IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-43532-4.html
   My bibliography  Save this article

Global increase in tropical cyclone ocean surface waves

Author

Listed:
  • Jian Shi

    (Hohai University
    Coastal and Offshore Engineering, Hohai University)

  • Xiangbo Feng

    (University of Reading
    Imperial College London)

  • Ralf Toumi

    (Imperial College London)

  • Chi Zhang

    (Coastal and Offshore Engineering, Hohai University
    The National Key Laboratory of Water Disaster Prevention)

  • Kevin I. Hodges

    (University of Reading)

  • Aifeng Tao

    (Hohai University
    Coastal and Offshore Engineering, Hohai University)

  • Wei Zhang

    (Coastal and Offshore Engineering, Hohai University
    The National Key Laboratory of Water Disaster Prevention)

  • Jinhai Zheng

    (Hohai University
    Coastal and Offshore Engineering, Hohai University)

Abstract

The long-term changes of ocean surface waves associated with tropical cyclones (TCs) are poorly observed and understood. Here, we present the global trend analysis of TC waves for 1979–2022 based on the ERA5 wave reanalysis. The maximum height and the area of the TC wave footprint in the six h reanalysis have increased globally by about 3%/decade and 6%/decade, respectively. The TC wave energy transferred at the interface from the atmosphere to the ocean has increased globally by about 9%/decade, which is three times larger than that reported for all waves. The global energy changes are mostly driven by the growing area of the wave footprint. Our study shows that the TC-associated wave hazard has increased significantly and these changes are larger than those of the TC maximum wind speed. This suggests that the wave hazard should be a concern in the future.

Suggested Citation

  • Jian Shi & Xiangbo Feng & Ralf Toumi & Chi Zhang & Kevin I. Hodges & Aifeng Tao & Wei Zhang & Jinhai Zheng, 2024. "Global increase in tropical cyclone ocean surface waves," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-43532-4
    DOI: 10.1038/s41467-023-43532-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43532-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43532-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. James P. Kossin, 2018. "Author Correction: A global slowdown of tropical-cyclone translation speed," Nature, Nature, vol. 564(7735), pages 11-16, December.
    2. P. Peduzzi & B. Chatenoux & H. Dao & A. De Bono & C. Herold & J. Kossin & F. Mouton & O. Nordbeck, 2012. "Global trends in tropical cyclone risk," Nature Climate Change, Nature, vol. 2(4), pages 289-294, April.
    3. Kieran T. Bhatia & Gabriel A. Vecchi & Thomas R. Knutson & Hiroyuki Murakami & James Kossin & Keith W. Dixon & Carolyn E. Whitlock, 2019. "Author Correction: Recent increases in tropical cyclone intensification rates," Nature Communications, Nature, vol. 10(1), pages 1-1, December.
    4. Munehiko Yamaguchi & Johnny C. L. Chan & Il-Ju Moon & Kohei Yoshida & Ryo Mizuta, 2020. "Global warming changes tropical cyclone translation speed," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    5. Borja G. Reguero & Iñigo J. Losada & Fernando J. Méndez, 2019. "A recent increase in global wave power as a consequence of oceanic warming," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    6. Oscar Guzman & Haiyan Jiang, 2021. "Global increase in tropical cyclone rain rate," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    7. Xiangbo Feng & Nicholas P. Klingaman & Kevin I. Hodges, 2021. "Poleward migration of western North Pacific tropical cyclones related to changes in cyclone seasonality," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    8. John R. Lanzante, 2019. "Uncertainties in tropical-cyclone translation speed," Nature, Nature, vol. 570(7759), pages 6-15, June.
    9. Kieran T. Bhatia & Gabriel A. Vecchi & Thomas R. Knutson & Hiroyuki Murakami & James Kossin & Keith W. Dixon & Carolyn E. Whitlock, 2019. "Recent increases in tropical cyclone intensification rates," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    10. Joao Morim & Mark Hemer & Xiaolan L. Wang & Nick Cartwright & Claire Trenham & Alvaro Semedo & Ian Young & Lucy Bricheno & Paula Camus & Mercè Casas-Prat & Li Erikson & Lorenzo Mentaschi & Nobuhito Mo, 2019. "Robustness and uncertainties in global multivariate wind-wave climate projections," Nature Climate Change, Nature, vol. 9(9), pages 711-718, September.
    11. Kieran T. Bhatia & Gabriel A. Vecchi & Thomas R. Knutson & Hiroyuki Murakami & James Kossin & Keith W. Dixon & Carolyn E. Whitlock, 2019. "Author Correction: Recent increases in tropical cyclone intensification rates," Nature Communications, Nature, vol. 10(1), pages 1-1, December.
    12. Il-Ju Moon & Sung-Hun Kim & Johnny C. L. Chan, 2019. "Climate change and tropical cyclone trend," Nature, Nature, vol. 570(7759), pages 3-5, June.
    13. James P. Kossin, 2018. "A global slowdown of tropical-cyclone translation speed," Nature, Nature, vol. 558(7708), pages 104-107, June.
    14. Michalis I. Vousdoukas & Lorenzo Mentaschi & Evangelos Voukouvalas & Martin Verlaan & Svetlana Jevrejeva & Luke P. Jackson & Luc Feyen, 2018. "Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    15. Thomas L. Frölicher & Erich M. Fischer & Nicolas Gruber, 2018. "Marine heatwaves under global warming," Nature, Nature, vol. 560(7718), pages 360-364, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Li & Youmin Tang & Shuai Wang & Ralf Toumi & Xiangzhou Song & Qiang Wang, 2023. "Recent increases in tropical cyclone rapid intensification events in global offshore regions," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Qian Ke & Jiangshan Yin & Jeremy D. Bricker & Nicholas Savage & Erasmo Buonomo & Qinghua Ye & Paul Visser & Guangtao Dong & Shuai Wang & Zhan Tian & Laixiang Sun & Ralf Toumi & Sebastiaan N. Jonkman, 2021. "An integrated framework of coastal flood modelling under the failures of sea dikes: a case study in Shanghai," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 671-703, October.
    3. Xiangbo Feng & Nicholas P. Klingaman & Kevin I. Hodges, 2021. "Poleward migration of western North Pacific tropical cyclones related to changes in cyclone seasonality," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    4. Shifei Tu & Johnny C. L. Chan & Jianjun Xu & Quanjia Zhong & Wen Zhou & Yu Zhang, 2022. "Increase in tropical cyclone rain rate with translation speed," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Pavan Harika Raavi & Jung-Eun Chu & Axel Timmermann & Sun-Seon Lee & Kevin J. E. Walsh, 2023. "Moisture control of tropical cyclones in high-resolution simulations of paleoclimate and future climate," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Raphaelle G. Coulombe & Akhil Rao, 2023. "Fires and Local Labor Markets," Papers 2308.02739, arXiv.org.
    7. Ryan E. Truchelut & Philip J. Klotzbach & Erica M. Staehling & Kimberly M. Wood & Daniel J. Halperin & Carl J. Schreck & Eric S. Blake, 2022. "Earlier onset of North Atlantic hurricane season with warming oceans," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Anil Deo & Savin S. Chand & R. Duncan McIntosh & Bipen Prakash & Neil J. Holbrook & Andrew Magee & Alick Haruhiru & Philip Malsale, 2022. "Severe tropical cyclones over southwest Pacific Islands: economic impacts and implications for disaster risk management," Climatic Change, Springer, vol. 172(3), pages 1-23, June.
    9. Yang Yang & David J. W. Piper & Min Xu & Jianhua Gao & Jianjun Jia & Alexandre Normandeau & Dongdong Chu & Liang Zhou & Ya Ping Wang & Shu Gao, 2022. "Northwestern Pacific tropical cyclone activity enhanced by increased Asian dust emissions during the Little Ice Age," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Kieran Bhatia & Alexander Baker & Wenchang Yang & Gabriel Vecchi & Thomas Knutson & Hiroyuki Murakami & James Kossin & Kevin Hodges & Keith Dixon & Benjamin Bronselaer & Carolyn Whitlock, 2022. "A potential explanation for the global increase in tropical cyclone rapid intensification," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Ya-Ting Chang & I-I Lin & Hsiao-Ching Huang & Yi-Chun Liao & Chun-Chi Lien, 2020. "The Association of Typhoon Intensity Increase with Translation Speed Increase in the South China Sea," Sustainability, MDPI, vol. 12(3), pages 1-13, January.
    12. Phillip K. Agbesi & Rico Ruffino & Marko Hakovirta, 2023. "The development of sustainable electric vehicle business ecosystems," SN Business & Economics, Springer, vol. 3(8), pages 1-59, August.
    13. Chin‐Hsien Yu & Bruce A. McCarl & Jian‐Da Zhu, 2022. "Market response to typhoons: The role of information and expectations," Southern Economic Journal, John Wiley & Sons, vol. 89(2), pages 496-521, October.
    14. Kai Yin & Sudong Xu & Quan Zhao & Nini Zhang & Mengqi Li, 2021. "Effects of sea surface warming and sea-level rise on tropical cyclone and inundation modeling at Shanghai coast," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 755-784, October.
    15. Mallucci, Enrico, 2022. "Natural disasters, climate change, and sovereign risk," Journal of International Economics, Elsevier, vol. 139(C).
    16. John Miller & Guilherme Vieira Silva & Darrell Strauss, 2023. "Divergence of tropical cyclone hazard based on wind-weighted track distributions in the Coral Sea, over 50 years," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2591-2617, March.
    17. Renato Molina & Ivan Rudik, 2022. "The Social Value of Predicting Hurricanes," CESifo Working Paper Series 10049, CESifo.
    18. Liu, Jin & Meucci, Alberto & Liu, Qingxiang & Babanin, Alexander V. & Ierodiaconou, Daniel & Xu, Xingkun & Young, Ian R., 2023. "A high-resolution wave energy assessment of south-east Australia based on a 40-year hindcast," Renewable Energy, Elsevier, vol. 215(C).
    19. Lira-Loarca, Andrea & Ferrari, Francesco & Mazzino, Andrea & Besio, Giovanni, 2021. "Future wind and wave energy resources and exploitability in the Mediterranean Sea by 2100," Applied Energy, Elsevier, vol. 302(C).
    20. Xiaotong Sui & Mingzhao Hu & Haoyun Wang & Lingdi Zhao, 2023. "Improved elasticity estimation model for typhoon storm surge losses in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2363-2381, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-43532-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.