IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v560y2018i7718d10.1038_s41586-018-0383-9.html
   My bibliography  Save this article

Marine heatwaves under global warming

Author

Listed:
  • Thomas L. Frölicher

    (Physics Institute, University of Bern
    Oeschger Centre for Climate Change Research, University of Bern)

  • Erich M. Fischer

    (Institute for Atmospheric and Climate Science, ETH Zürich)

  • Nicolas Gruber

    (Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich)

Abstract

Marine heatwaves (MHWs) are periods of extreme warm sea surface temperature that persist for days to months1 and can extend up to thousands of kilometres2. Some of the recently observed marine heatwaves revealed the high vulnerability of marine ecosystems3–11 and fisheries12–14 to such extreme climate events. Yet our knowledge about past occurrences15 and the future progression of MHWs is very limited. Here we use satellite observations and a suite of Earth system model simulations to show that MHWs have already become longer-lasting and more frequent, extensive and intense in the past few decades, and that this trend will accelerate under further global warming. Between 1982 and 2016, we detect a doubling in the number of MHW days, and this number is projected to further increase on average by a factor of 16 for global warming of 1.5 degrees Celsius relative to preindustrial levels and by a factor of 23 for global warming of 2.0 degrees Celsius. However, current national policies for the reduction of global carbon emissions are predicted to result in global warming of about 3.5 degrees Celsius by the end of the twenty-first century16, for which models project an average increase in the probability of MHWs by a factor of 41. At this level of warming, MHWs have an average spatial extent that is 21 times bigger than in preindustrial times, last on average 112 days and reach maximum sea surface temperature anomaly intensities of 2.5 degrees Celsius. The largest changes are projected to occur in the western tropical Pacific and Arctic oceans. Today, 87 per cent of MHWs are attributable to human-induced warming, with this ratio increasing to nearly 100 per cent under any global warming scenario exceeding 2 degrees Celsius. Our results suggest that MHWs will become very frequent and extreme under global warming, probably pushing marine organisms and ecosystems to the limits of their resilience and even beyond, which could cause irreversible changes.

Suggested Citation

  • Thomas L. Frölicher & Erich M. Fischer & Nicolas Gruber, 2018. "Marine heatwaves under global warming," Nature, Nature, vol. 560(7718), pages 360-364, August.
  • Handle: RePEc:nat:nature:v:560:y:2018:i:7718:d:10.1038_s41586-018-0383-9
    DOI: 10.1038/s41586-018-0383-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0383-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0383-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Jing & Lei, Xiaohui & Chen, Bin & Song, Yongyu, 2019. "Analysis of blue water footprint of hydropower considering allocation coefficients for multi-purpose reservoirs," Energy, Elsevier, vol. 188(C).
    2. Friedrich A. Burger & Jens Terhaar & Thomas L. Frölicher, 2022. "Compound marine heatwaves and ocean acidity extremes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Shannon G. Klein & Cassandra Roch & Carlos M. Duarte, 2024. "Systematic review of the uncertainty of coral reef futures under climate change," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Ziming Chen & Tianjun Zhou & Xiaolong Chen & Wenxia Zhang & Lixia Zhang & Mingna Wu & Liwei Zou, 2022. "Observationally constrained projection of Afro-Asian monsoon precipitation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Mi-Kyung Sung & Soon-Il An & Jongsoo Shin & Jae-Heung Park & Young-Min Yang & Hyo-Jeong Kim & Minhee Chang, 2023. "Ocean fronts as decadal thermostats modulating continental warming hiatus," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Erma Yulihastin & Ankiq Taofiqurohman & Ibnu Fathrio & Fadli Nauval & Dita Fatria Andarini & Rahaden Bagas Hatmaja & Akhmad Fahim & Namira Nasywa Perdani & Haries Satyawardhana & M. Furqon Azis Ismail, 2023. "Evolution of double vortices induce tropical cyclogenesis of Seroja over Flores, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2675-2692, July.
    7. Ce Bian & Zhao Jing & Hong Wang & Lixin Wu & Zhaohui Chen & Bolan Gan & Haiyuan Yang, 2023. "Oceanic mesoscale eddies as crucial drivers of global marine heatwaves," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Shengpeng Wang & Zhao Jing & Lixin Wu & Shantong Sun & Qihua Peng & Hong Wang & Yu Zhang & Jian Shi, 2023. "Southern hemisphere eastern boundary upwelling systems emerging as future marine heatwave hotspots under greenhouse warming," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Ying Zhang & Yan Du & Ming Feng & Alistair J. Hobday, 2023. "Vertical structures of marine heatwaves," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. R Varela & L Rodríguez-Díaz & M deCastro, 2020. "Persistent heat waves projected for Middle East and North Africa by the end of the 21st century," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-18, November.
    11. Sauterey, Boris & Gland, Guillaume Le & Cermeño, Pedro & Aumont, Olivier & Lévy, Marina & Vallina, Sergio M., 2023. "Phytoplankton adaptive resilience to climate change collapses in case of extreme events – A modeling study," Ecological Modelling, Elsevier, vol. 483(C).
    12. Alexandre Mignot & Karina Schuckmann & Peter Landschützer & Florent Gasparin & Simon Gennip & Coralie Perruche & Julien Lamouroux & Tristan Amm, 2022. "Decrease in air-sea CO2 fluxes caused by persistent marine heatwaves," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Lisandro Benedetti-Cecchi & Amanda E. Bates & Giovanni Strona & Fabio Bulleri & Barbara Horta e Costa & Graham J. Edgar & Bernat Hereu & Dan C. Reed & Rick D. Stuart-Smith & Neville S. Barrett & David, 2024. "Marine protected areas promote stability of reef fish communities under climate warming," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    14. Tongtong Xu & Matthew Newman & Antonietta Capotondi & Samantha Stevenson & Emanuele Di Lorenzo & Michael A. Alexander, 2022. "An increase in marine heatwaves without significant changes in surface ocean temperature variability," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Frank A. La Sorte & Alison Johnston & Toby R. Ault, 2021. "Global trends in the frequency and duration of temperature extremes," Climatic Change, Springer, vol. 166(1), pages 1-14, May.
    16. Jian Shi & Xiangbo Feng & Ralf Toumi & Chi Zhang & Kevin I. Hodges & Aifeng Tao & Wei Zhang & Jinhai Zheng, 2024. "Global increase in tropical cyclone ocean surface waves," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. Jia Zheng & Ning Guo & Yuxiang Huang & Xiang Guo & Andreas Wagner, 2024. "High temperature delays and low temperature accelerates evolution of a new protein phenotype," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:560:y:2018:i:7718:d:10.1038_s41586-018-0383-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.