IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30145-6.html
   My bibliography  Save this article

Contrasting influences of biogeophysical and biogeochemical impacts of historical land use on global economic inequality

Author

Listed:
  • Shu Liu

    (Tsinghua University)

  • Yong Wang

    (Tsinghua University)

  • Guang J. Zhang

    (Scripps Institution of Oceanography)

  • Linyi Wei

    (Tsinghua University)

  • Bin Wang

    (Tsinghua University
    Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Le Yu

    (Tsinghua University)

Abstract

Climate change has significant implications for macro-economic growth. The impacts of greenhouse gases and anthropogenic aerosols on economies via altered annual mean temperature (AMT) have been studied. However, the economic impact of land-use and land-cover change (LULCC) is still unknown because it has both biogeochemical and biogeophysical impacts on temperature and the latter differs in latitudes and disturbed land surface types. In this work, based on multi-model simulations from the Coupled Model Intercomparison Project Phase 6, contrasting influences of biogeochemical and biogeophysical impacts of historical (1850–2014) LULCC on economies are found. Their combined effects on AMT result in warming in most countries, which harms developing economies in warm climates but benefits developed economies in cold climates. Thus, global economic inequality is increased. Besides the increased AMT by the combined effects, day-to-day temperature variability is enhanced in developing economies but reduced in developed economies, which further deteriorates global economic inequality.

Suggested Citation

  • Shu Liu & Yong Wang & Guang J. Zhang & Linyi Wei & Bin Wang & Le Yu, 2022. "Contrasting influences of biogeophysical and biogeochemical impacts of historical land use on global economic inequality," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30145-6
    DOI: 10.1038/s41467-022-30145-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30145-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30145-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marshall Burke & Solomon M. Hsiang & Edward Miguel, 2015. "Global non-linear effect of temperature on economic production," Nature, Nature, vol. 527(7577), pages 235-239, November.
    2. Xavier Sala-i-Martin, 2006. "The World Distribution of Income: Falling Poverty and … Convergence, Period," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 121(2), pages 351-397.
    3. Quentin Lejeune & Edouard L. Davin & Lukas Gudmundsson & Johannes Winckler & Sonia I. Seneviratne, 2018. "Historical deforestation locally increased the intensity of hot days in northern mid-latitudes," Nature Climate Change, Nature, vol. 8(5), pages 386-390, May.
    4. Maximilian Kotz & Leonie Wenz & Annika Stechemesser & Matthias Kalkuhl & Anders Levermann, 2021. "Day-to-day temperature variability reduces economic growth," Nature Climate Change, Nature, vol. 11(4), pages 319-325, April.
    5. Maximilian Kotz & Anders Levermann & Leonie Wenz, 2022. "The effect of rainfall changes on economic production," Nature, Nature, vol. 601(7892), pages 223-227, January.
    6. Yixuan Zheng & Steven J. Davis & Geeta G. Persad & Ken Caldeira, 2020. "Climate effects of aerosols reduce economic inequality," Nature Climate Change, Nature, vol. 10(3), pages 220-224, March.
    7. Maximilian Auffhammer & V. Ramanathan & Jeffrey Vincent, 2012. "Climate change, the monsoon, and rice yield in India," Climatic Change, Springer, vol. 111(2), pages 411-424, March.
    8. Marshall Burke & W. Matthew Davis & Noah S. Diffenbaugh, 2018. "Large potential reduction in economic damages under UN mitigation targets," Nature, Nature, vol. 557(7706), pages 549-553, May.
    9. Michael G. Windisch & Edouard L. Davin & Sonia I. Seneviratne, 2021. "Prioritizing forestation based on biogeochemical and local biogeophysical impacts," Nature Climate Change, Nature, vol. 11(10), pages 867-871, October.
    10. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2012. "Temperature Shocks and Economic Growth: Evidence from the Last Half Century," American Economic Journal: Macroeconomics, American Economic Association, vol. 4(3), pages 66-95, July.
    11. Delavane Diaz & Frances Moore, 2017. "Quantifying the economic risks of climate change," Nature Climate Change, Nature, vol. 7(11), pages 774-782, November.
    12. Stephane Hallegatte & Julie Rozenberg, 2017. "Climate change through a poverty lens," Nature Climate Change, Nature, vol. 7(4), pages 250-256, April.
    13. Sebastiaan Luyssaert & Mathilde Jammet & Paul C. Stoy & Stephan Estel & Julia Pongratz & Eric Ceschia & Galina Churkina & Axel Don & KarlHeinz Erb & Morgan Ferlicoq & Bert Gielen & Thomas Grünwald & R, 2014. "Land management and land-cover change have impacts of similar magnitude on surface temperature," Nature Climate Change, Nature, vol. 4(5), pages 389-393, May.
    14. Chaopeng Hong & Jennifer A. Burney & Julia Pongratz & Julia E. M. S. Nabel & Nathaniel D. Mueller & Robert B. Jackson & Steven J. Davis, 2021. "Global and regional drivers of land-use emissions in 1961–2017," Nature, Nature, vol. 589(7843), pages 554-561, January.
    15. Michael Mastrandrea & Katharine Mach & Gian-Kasper Plattner & Ottmar Edenhofer & Thomas Stocker & Christopher Field & Kristie Ebi & Patrick Matschoss, 2011. "The IPCC AR5 guidance note on consistent treatment of uncertainties: a common approach across the working groups," Climatic Change, Springer, vol. 108(4), pages 675-691, October.
    16. Andrew D. Barnes & Malte Jochum & Steffen Mumme & Noor Farikhah Haneda & Achmad Farajallah & Tri Heru Widarto & Ulrich Brose, 2014. "Consequences of tropical land use for multitrophic biodiversity and ecosystem functioning," Nature Communications, Nature, vol. 5(1), pages 1-7, December.
    17. Gregory Duveiller & Josh Hooker & Alessandro Cescatti, 2018. "The mark of vegetation change on Earth’s surface energy balance," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yajuan Wang & Yongheng Rao & Hongbo Zhu, 2022. "Revealing the Impact of Protected Areas on Land Cover Volatility in China," Land, MDPI, vol. 11(8), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Jun-Jie & Mi, Zhifu & Wei, Yi-Ming, 2023. "Temperature and GDP: A review of climate econometrics analysis," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 383-392.
    2. Kotz, Maximilian & Kuik, Friderike & Lis, Eliza & Nickel, Christiane, 2023. "The impact of global warming on inflation: averages, seasonality and extremes," Working Paper Series 2821, European Central Bank.
    3. Wenju Cai & Yi Liu & Xiaopei Lin & Ziguang Li & Ying Zhang & David Newth, 2024. "Nonlinear country-heterogenous impact of the Indian Ocean Dipole on global economies," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Patrycja Klusak & Matthew Agarwala & Matt Burke & Moritz Kraemer & Kamiar Mohaddes, 2023. "Rising Temperatures, Falling Ratings: The Effect of Climate Change on Sovereign Creditworthiness," Management Science, INFORMS, vol. 69(12), pages 7468-7491, December.
    5. Nicolas Taconet & Aurélie Méjean & Céline Guivarch, 2020. "Influence of climate change impacts and mitigation costs on inequality between countries," Climatic Change, Springer, vol. 160(1), pages 15-34, May.
    6. Tol, Richard S.J., 2024. "A meta-analysis of the total economic impact of climate change," Energy Policy, Elsevier, vol. 185(C).
    7. Linsenmeier, Manuel, 2021. "Temperature variability and long-run economic development," LSE Research Online Documents on Economics 110499, London School of Economics and Political Science, LSE Library.
    8. Eduardo Cavallo & Bridget Hoffmann & Ilan Noy, 2023. "Disasters and Climate Change in Latin America and the Caribbean: An Introduction to the Special Issue," Economics of Disasters and Climate Change, Springer, vol. 7(2), pages 135-145, July.
    9. Filippo Natoli, 2023. "The macroeconomic effects of temperature surprise shocks," Temi di discussione (Economic working papers) 1407, Bank of Italy, Economic Research and International Relations Area.
    10. Linsenmeier, Manuel, 2023. "Temperature variability and long-run economic development," LSE Research Online Documents on Economics 119485, London School of Economics and Political Science, LSE Library.
    11. Desbordes, Rodolphe & Eberhardt, Markus, 2024. "Climate change and economic prosperity: Evidence from a flexible damage function," Journal of Environmental Economics and Management, Elsevier, vol. 125(C).
    12. Linsenmeier, Manuel, 2023. "Temperature variability and long-run economic development," Journal of Environmental Economics and Management, Elsevier, vol. 121(C).
    13. Yi Liu & Wenju Cai & Xiaopei Lin & Ziguang Li & Ying Zhang, 2023. "Nonlinear El Niño impacts on the global economy under climate change," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    15. Damette, Olivier & Mathonnat, Clément & Thavard, Julien, 2024. "Climate and sovereign risk: The Latin American experience with strong ENSO events," World Development, Elsevier, vol. 178(C).
    16. Francisco Costa & Fabien Forge & Jason Garred & João Paulo Pessoa, 2023. "The Impact of Climate Change on Risk and Return in Indian Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(1), pages 1-27, May.
    17. Gregory Casey & Stephie Fried & Ethan Goode, 2023. "Projecting the Impact of Rising Temperatures: The Role of Macroeconomic Dynamics," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 71(3), pages 688-718, September.
    18. Wu, Zhiyang & Zhou, Tao & Zhang, Ning & Choi, Yongrok & Kong, Fanbin, 2023. "A hidden risk in climate change: The effect of daily rainfall shocks on industrial activities," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 161-180.
    19. Barbora Sedova & Matthias Kalkuhl & Robert Mendelsohn, 2020. "Distributional Impacts of Weather and Climate in Rural India," Economics of Disasters and Climate Change, Springer, vol. 4(1), pages 5-44, April.
    20. Tol, Richard S.J., 2019. "A social cost of carbon for (almost) every country," Energy Economics, Elsevier, vol. 83(C), pages 555-566.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30145-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.