IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28651-8.html
   My bibliography  Save this article

Unexpectedly minor nitrous oxide emissions from fluvial networks draining permafrost catchments of the East Qinghai-Tibet Plateau

Author

Listed:
  • Liwei Zhang

    (Beijing Normal University
    Peking University)

  • Sibo Zhang

    (Guangdong University of Technology)

  • Xinghui Xia

    (Beijing Normal University)

  • Tom J. Battin

    (École Polytechnique Fédérale de Lausanne)

  • Shaoda Liu

    (Beijing Normal University)

  • Qingrui Wang

    (Beijing Normal University)

  • Ran Liu

    (Beijing Jiaotong University)

  • Zhifeng Yang

    (Guangdong University of Technology)

  • Jinren Ni

    (Peking University)

  • Emily H. Stanley

    (University of Wisconsin-Madison)

Abstract

Streams and rivers emit substantial amounts of nitrous oxide (N2O) and are therefore an essential component of global nitrogen (N) cycle. Permafrost soils store a large reservoir of dormant N that, upon thawing, can enter fluvial networks and partly degrade to N2O, yet the role of waterborne release of N2O in permafrost regions is unclear. Here we report N2O concentrations and fluxes during different seasons between 2016 and 2018 in four watersheds on the East Qinghai-Tibet Plateau. Thawing permafrost soils are known to emit N2O at a high rate, but permafrost rivers draining the East Qinghai-Tibet Plateau behave as unexpectedly minor sources of atmospheric N2O. Such low N2O fluxes are associated with low riverine dissolved inorganic N (DIN) after terrestrial plant uptake, unfavorable conditions for N2O generation via denitrification, and low N2O yield due to a small ratio of nitrite reductase: nitrous oxide reductase in these rivers. We estimate fluvial N2O emissions of 0.432 − 0.463 Gg N2O-N yr−1 from permafrost landscapes on the entire Qinghai-Tibet Plateau, which is marginal (~0.15%) given their areal contribution to global streams and rivers (0.7%). However, we suggest that these permafrost-affected rivers can shift from minor sources to strong emitters in the warmer future, likely giving rise to the permafrost non-carbon feedback that intensifies warming.

Suggested Citation

  • Liwei Zhang & Sibo Zhang & Xinghui Xia & Tom J. Battin & Shaoda Liu & Qingrui Wang & Ran Liu & Zhifeng Yang & Jinren Ni & Emily H. Stanley, 2022. "Unexpectedly minor nitrous oxide emissions from fluvial networks draining permafrost catchments of the East Qinghai-Tibet Plateau," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28651-8
    DOI: 10.1038/s41467-022-28651-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28651-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28651-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Richard B. Alexander & Richard A. Smith & Gregory E. Schwarz, 2000. "Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico," Nature, Nature, vol. 403(6771), pages 758-761, February.
    2. Dan Kou & Guibiao Yang & Fei Li & Xuehui Feng & Dianye Zhang & Chao Mao & Qiwen Zhang & Yunfeng Peng & Chengjun Ji & Qiuan Zhu & Yunting Fang & Xueyan Liu & Xu-Ri & Siqi Li & Jia Deng & Xunhua Zheng &, 2020. "Progressive nitrogen limitation across the Tibetan alpine permafrost region," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    3. Joshua F. Dean & Ove H. Meisel & Melanie Martyn Rosco & Luca Belelli Marchesini & Mark H. Garnett & Henk Lenderink & Richard van Logtestijn & Alberto V. Borges & Steven Bouillon & Thibault Lambert & T, 2020. "East Siberian Arctic inland waters emit mostly contemporary carbon," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    4. Ehui Tan & Wenbin Zou & Zhenzhen Zheng & Xiuli Yan & Moge Du & Ting-Chang Hsu & Li Tian & Jack J. Middelburg & Thomas W. Trull & Shuh-ji Kao, 2020. "Warming stimulates sediment denitrification at the expense of anaerobic ammonium oxidation," Nature Climate Change, Nature, vol. 10(4), pages 349-355, April.
    5. Mengdi Gao & Shilong Piao & Anping Chen & Hui Yang & Qiang Liu & Yongshuo H. Fu & Ivan A. Janssens, 2019. "Divergent changes in the elevational gradient of vegetation activities over the last 30 years," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    6. Yuanzhi Yao & Hanqin Tian & Hao Shi & Shufen Pan & Rongting Xu & Naiqing Pan & Josep G. Canadell, 2020. "Increased global nitrous oxide emissions from streams and rivers in the Anthropocene," Nature Climate Change, Nature, vol. 10(2), pages 138-142, February.
    7. Xiao Yang & Tamlin M. Pavelsky & George H. Allen, 2020. "The past and future of global river ice," Nature, Nature, vol. 577(7788), pages 69-73, January.
    8. Joshua F. Dean & Ove H. Meisel & Melanie Martyn Rosco & Luca Belelli Marchesini & Mark H. Garnett & Henk Lenderink & Richard Logtestijn & Alberto V. Borges & Steven Bouillon & Thibault Lambert & Thoma, 2020. "Publisher Correction: East Siberian Arctic inland waters emit mostly contemporary carbon," Nature Communications, Nature, vol. 11(1), pages 1-1, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wilfred M. Wollheim & Tamara K. Harms & Andrew L. Robison & Lauren E. Koenig & Ashley M. Helton & Chao Song & William B. Bowden & Jacques C. Finlay, 2022. "Superlinear scaling of riverine biogeochemical function with watershed size," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Guibiao Yang & Zhihu Zheng & Benjamin W. Abbott & David Olefeldt & Christian Knoblauch & Yutong Song & Luyao Kang & Shuqi Qin & Yunfeng Peng & Yuanhe Yang, 2023. "Characteristics of methane emissions from alpine thermokarst lakes on the Tibetan Plateau," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Ya Li & Hanqin Tian & Yuanzhi Yao & Hao Shi & Zihao Bian & Yu Shi & Siyuan Wang & Taylor Maavara & Ronny Lauerwald & Shufen Pan, 2024. "Increased nitrous oxide emissions from global lakes and reservoirs since the pre-industrial era," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Weili Duan & Bin He & Daniel Nover & Guishan Yang & Wen Chen & Huifang Meng & Shan Zou & Chuanming Liu, 2016. "Water Quality Assessment and Pollution Source Identification of the Eastern Poyang Lake Basin Using Multivariate Statistical Methods," Sustainability, MDPI, vol. 8(2), pages 1-15, January.
    5. Liem Tran & Robert O’Neill & Elizabeth Smith & Randall Bruins & Carol Harden, 2013. "Application of Hierarchy Theory to Cross-Scale Hydrologic Modeling of Nutrient Loads," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1601-1617, March.
    6. Fengsong Pei & Yi Zhou & Yan Xia, 2021. "Assessing the Impacts of Extreme Precipitation Change on Vegetation Activity," Agriculture, MDPI, vol. 11(6), pages 1-16, May.
    7. Yuqing Miao & Fanghu Sun & Weilin Hong & Fengman Fang & Jian Yu & Hao Luo & Chuansheng Wu & Guanglai Xu & Yilin Sun & Henan Meng, 2022. "Greenhouse Gas Emissions from a Main Tributary of the Yangtze River, Eastern China," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    8. Renata Graf & Tomasz Kolerski & Senlin Zhu, 2022. "Predicting Ice Phenomena in a River Using the Artificial Neural Network and Extreme Gradient Boosting," Resources, MDPI, vol. 11(2), pages 1-26, January.
    9. Xuedong Liang & Dongyang Si & Jing Xu, 2018. "Quantitative Evaluation of the Sustainable Development Capacity of Hydropower in China Based on Information Entropy," Sustainability, MDPI, vol. 10(2), pages 1-18, February.
    10. Shang, Xiao & Wang, Xinze & Zhang, Dalei & Chen, Weidong & Chen, Xuechu & Kong, Hainan, 2012. "An improved SWAT-based computational framework for identifying critical source areas for agricultural pollution at the lake basin scale," Ecological Modelling, Elsevier, vol. 226(C), pages 1-10.
    11. Greenhalgh, Suzie & Faeth, Paul, 2001. "A Water Quality Strategy For The Mississippi River Basin And The Gulf Of Mexico," 2001 Annual meeting, August 5-8, Chicago, IL 20528, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    12. Xiaobo Zhu & Honglin He & Mingguo Ma & Xiaoli Ren & Li Zhang & Fawei Zhang & Yingnian Li & Peili Shi & Shiping Chen & Yanfen Wang & Xiaoping Xin & Yaoming Ma & Yu Zhang & Mingyuan Du & Rong Ge & Na Ze, 2020. "Estimating Ecosystem Respiration in the Grasslands of Northern China Using Machine Learning: Model Evaluation and Comparison," Sustainability, MDPI, vol. 12(5), pages 1-17, March.
    13. Diana Šarauskienė & Darius Jakimavičius & Aldona Jurgelėnaitė & Jūratė Kriaučiūnienė, 2024. "Warming Climate-Induced Changes in Lithuanian River Ice Phenology," Sustainability, MDPI, vol. 16(2), pages 1-18, January.
    14. Claassen, Roger & Aillery, Marcel P. & Nickerson, Cynthia J., 2007. "Integrating Commodity and Conservation Programs: Design Options and Outcomes," Economic Research Report 6703, United States Department of Agriculture, Economic Research Service.
    15. Lu, Jun & Gong, Dongqin & Shen, Yena & Liu, Mei & Chen, Dingjiang, 2013. "An inversed Bayesian modeling approach for estimating nitrogen export coefficients and uncertainty assessment in an agricultural watershed in eastern China," Agricultural Water Management, Elsevier, vol. 116(C), pages 79-88.
    16. Wagenschein, Dierk & Rode, Michael, 2008. "Modelling the impact of river morphology on nitrogen retention—A case study of the Weisse Elster River (Germany)," Ecological Modelling, Elsevier, vol. 211(1), pages 224-232.
    17. Gowda, Prasanna H. & Mulla, David J. & Jaynes, Dan B., 2008. "Simulated long-term nitrogen losses for a midwestern agricultural watershed in the United States," Agricultural Water Management, Elsevier, vol. 95(5), pages 616-624, May.
    18. Yang, Chuntao & Millner, James Peter & Sun, Yi & Yuan, Hang & Liu, Yang & Zhang, Yan & Wang, Zhaofeng & Chang, Shenghua & Hou, Fujiang, 2021. "Supplementary feeding yak with oat hay improves nitrogen cycling in an alpine meadow on the Qinghai-Tibet Plateau, China," Agricultural Systems, Elsevier, vol. 193(C).
    19. Zhang, Pengyi & Liang, Yu & Liu, Bo & Ma, Tianxiao & Wu, Mia M., 2023. "A coupled modelling framework for predicting tree species’ altitudinal migration velocity in montane forest," Ecological Modelling, Elsevier, vol. 484(C).
    20. Lin, Laurence & Davis, Lisa & Cohen, Sagy & Chapman, Elise & Edmonds, Jennifer W., 2016. "The influence of geomorphic unit spatial distribution on nitrogen retention and removal in a large river," Ecological Modelling, Elsevier, vol. 336(C), pages 26-35.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28651-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.