IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v403y2000i6771d10.1038_35001562.html
   My bibliography  Save this article

Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico

Author

Listed:
  • Richard B. Alexander

    (U. S. Geological Survey, 413 National Center)

  • Richard A. Smith

    (U. S. Geological Survey, 413 National Center)

  • Gregory E. Schwarz

    (U. S. Geological Survey, 413 National Center)

Abstract

An increase in the flux of nitrogen from the Mississippi river during the latter half of the twentieth century has caused eutrophication and chronic seasonal hypoxia in the shallow waters of the Louisiana shelf in the northern Gulf of Mexico1,2,3,4,5. This has led to reductions in species diversity, mortality of benthic communities and stress in fishery resources4. There is evidence for a predominantly anthropogenic origin of the increased nitrogen flux2,5,6,7, but the location of the most significant sources in the Mississippi basin responsible for the delivery of nitrogen to the Gulf of Mexico have not been clearly identified, because the parameters influencing nitrogen-loss rates in rivers are not well known. Here we present an analysis of data from 374 US monitoring stations, including 123 along the six largest tributaries to the Mississippi, that shows a rapid decline in the average first-order rate of nitrogen loss with channel size—from 0.45 day-1 in small streams to 0.005 day-1 in the Mississippi river. Using stream depth as an explanatory variable, our estimates of nitrogen-loss rates agreed with values from earlier studies. We conclude that the proximity of sources to large streams and rivers is an important determinant of nitrogen delivery to the estuary in the Mississippi basin, and possibly also in other large river basins.

Suggested Citation

  • Richard B. Alexander & Richard A. Smith & Gregory E. Schwarz, 2000. "Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico," Nature, Nature, vol. 403(6771), pages 758-761, February.
  • Handle: RePEc:nat:nature:v:403:y:2000:i:6771:d:10.1038_35001562
    DOI: 10.1038/35001562
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35001562
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35001562?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Jun & Gong, Dongqin & Shen, Yena & Liu, Mei & Chen, Dingjiang, 2013. "An inversed Bayesian modeling approach for estimating nitrogen export coefficients and uncertainty assessment in an agricultural watershed in eastern China," Agricultural Water Management, Elsevier, vol. 116(C), pages 79-88.
    2. Iago Lowe Hale & Wilfred M. Wollheim & Richard G. Smith & Heidi Asbjornsen & André F. Brito & Kirk Broders & A. Stuart Grandy & Rebecca Rowe, 2014. "A Scale-Explicit Framework for Conceptualizing the Environmental Impacts of Agricultural Land Use Changes," Sustainability, MDPI, vol. 6(12), pages 1-20, November.
    3. Weili Duan & Bin He & Daniel Nover & Guishan Yang & Wen Chen & Huifang Meng & Shan Zou & Chuanming Liu, 2016. "Water Quality Assessment and Pollution Source Identification of the Eastern Poyang Lake Basin Using Multivariate Statistical Methods," Sustainability, MDPI, vol. 8(2), pages 1-15, January.
    4. Wagenschein, Dierk & Rode, Michael, 2008. "Modelling the impact of river morphology on nitrogen retention—A case study of the Weisse Elster River (Germany)," Ecological Modelling, Elsevier, vol. 211(1), pages 224-232.
    5. Shang, Xiao & Wang, Xinze & Zhang, Dalei & Chen, Weidong & Chen, Xuechu & Kong, Hainan, 2012. "An improved SWAT-based computational framework for identifying critical source areas for agricultural pollution at the lake basin scale," Ecological Modelling, Elsevier, vol. 226(C), pages 1-10.
    6. Liwei Zhang & Sibo Zhang & Xinghui Xia & Tom J. Battin & Shaoda Liu & Qingrui Wang & Ran Liu & Zhifeng Yang & Jinren Ni & Emily H. Stanley, 2022. "Unexpectedly minor nitrous oxide emissions from fluvial networks draining permafrost catchments of the East Qinghai-Tibet Plateau," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Liem Tran & Robert O’Neill & Elizabeth Smith & Randall Bruins & Carol Harden, 2013. "Application of Hierarchy Theory to Cross-Scale Hydrologic Modeling of Nutrient Loads," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1601-1617, March.
    8. Gowda, Prasanna H. & Mulla, David J. & Jaynes, Dan B., 2008. "Simulated long-term nitrogen losses for a midwestern agricultural watershed in the United States," Agricultural Water Management, Elsevier, vol. 95(5), pages 616-624, May.
    9. Greenhalgh, Suzie & Faeth, Paul, 2001. "A Water Quality Strategy For The Mississippi River Basin And The Gulf Of Mexico," 2001 Annual meeting, August 5-8, Chicago, IL 20528, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    10. Wilfred M. Wollheim & Tamara K. Harms & Andrew L. Robison & Lauren E. Koenig & Ashley M. Helton & Chao Song & William B. Bowden & Jacques C. Finlay, 2022. "Superlinear scaling of riverine biogeochemical function with watershed size," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. H. Boyacioglu & T. Vetter & V. Krysanova & M. Rode, 2012. "Modeling the impacts of climate change on nitrogen retention in a 4th order stream," Climatic Change, Springer, vol. 113(3), pages 981-999, August.
    12. Yong Li & Yi Wang & Ji Liu & Meihui Wang & Jianlin Shen & Xinliang Liu, 2023. "Topography, Soil Elemental Stoichiometry and Landscape Structure Determine the Nitrogen and Phosphorus Loadings of Agricultural Catchments in the Subtropics," Land, MDPI, vol. 12(3), pages 1-21, February.
    13. Lin, Laurence & Davis, Lisa & Cohen, Sagy & Chapman, Elise & Edmonds, Jennifer W., 2016. "The influence of geomorphic unit spatial distribution on nitrogen retention and removal in a large river," Ecological Modelling, Elsevier, vol. 336(C), pages 26-35.
    14. Hart, Rob, 2003. "Dynamic pollution control--time lags and optimal restoration of marine ecosystems," Ecological Economics, Elsevier, vol. 47(1), pages 79-93, November.
    15. Sarah C. Sellars & Nathanael M. Thompson & Michael E. Wetzstein & Laura Bowling & Keith Cherkauer & Charlotte Lee & Jane Frankenberger & Ben Reinhart, 2022. "Does crop insurance inhibit climate change technology adoption?," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(3), pages 1-20, March.
    16. Ping Li & Nina Omani & Indrajeet Chaubey & Xiaomei Wei, 2017. "Evaluation of Drought Implications on Ecosystem Services: Freshwater Provisioning and Food Provisioning in the Upper Mississippi River Basin," IJERPH, MDPI, vol. 14(5), pages 1-23, May.
    17. Ping Li & Rebecca L. Muenich & Indrajeet Chaubey & Xiaomei Wei, 2019. "Evaluating Agricultural BMP Effectiveness in Improving Freshwater Provisioning Under Changing Climate," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 453-473, January.
    18. Xuedong Liang & Dongyang Si & Jing Xu, 2018. "Quantitative Evaluation of the Sustainable Development Capacity of Hydropower in China Based on Information Entropy," Sustainability, MDPI, vol. 10(2), pages 1-18, February.
    19. Claassen, Roger & Aillery, Marcel P. & Nickerson, Cynthia J., 2007. "Integrating Commodity and Conservation Programs: Design Options and Outcomes," Economic Research Report 6703, United States Department of Agriculture, Economic Research Service.
    20. Schuwirth, Nele & Acuña, Vicenç & Reichert, Peter, 2011. "Development of a mechanistic model (ERIMO-I) for analyzing the temporal dynamics of the benthic community of an intermittent Mediterranean stream," Ecological Modelling, Elsevier, vol. 222(1), pages 91-104.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:403:y:2000:i:6771:d:10.1038_35001562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.