IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38907-6.html
   My bibliography  Save this article

Characteristics of methane emissions from alpine thermokarst lakes on the Tibetan Plateau

Author

Listed:
  • Guibiao Yang

    (Chinese Academy of Sciences)

  • Zhihu Zheng

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Benjamin W. Abbott

    (Brigham Young University)

  • David Olefeldt

    (University of Alberta)

  • Christian Knoblauch

    (University of Hamburg)

  • Yutong Song

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Luyao Kang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Shuqi Qin

    (Chinese Academy of Sciences)

  • Yunfeng Peng

    (Chinese Academy of Sciences)

  • Yuanhe Yang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

Understanding methane (CH4) emission from thermokarst lakes is crucial for predicting the impacts of abrupt thaw on the permafrost carbon-climate feedback. However, observational evidence, especially from high-altitude permafrost regions, is still scarce. Here, by combining field surveys, radio- and stable-carbon isotopic analyses, and metagenomic sequencing, we present multiple characteristics of CH4 emissions from 120 thermokarst lakes in 30 clusters along a 1100 km transect on the Tibetan Plateau. We find that thermokarst lakes have high CH4 emissions during the ice-free period (13.4 ± 1.5 mmol m−2 d−1; mean ± standard error) across this alpine permafrost region. Ebullition constitutes 84% of CH4 emissions, which are fueled primarily by young carbon decomposition through the hydrogenotrophic pathway. The relative abundances of methanogenic genes correspond to the observed CH4 fluxes. Overall, multiple parameters obtained in this study provide benchmarks for better predicting the strength of permafrost carbon-climate feedback in high-altitude permafrost regions.

Suggested Citation

  • Guibiao Yang & Zhihu Zheng & Benjamin W. Abbott & David Olefeldt & Christian Knoblauch & Yutong Song & Luyao Kang & Shuqi Qin & Yunfeng Peng & Yuanhe Yang, 2023. "Characteristics of methane emissions from alpine thermokarst lakes on the Tibetan Plateau," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38907-6
    DOI: 10.1038/s41467-023-38907-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38907-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38907-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sim, C.H. & Gan, F.F. & Chang, T.C., 2005. "Outlier Labeling With Boxplot Procedures," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 642-652, June.
    2. Jerry Brown & Vladimir E. Romanovsky, 2008. "Report from the International Permafrost Association: state of permafrost in the first decade of the 21st century," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 19(2), pages 255-260, April.
    3. Katey Walter Anthony & Thomas Schneider von Deimling & Ingmar Nitze & Steve Frolking & Abraham Emond & Ronald Daanen & Peter Anthony & Prajna Lindgren & Benjamin Jones & Guido Grosse, 2018. "21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    4. Zhuo Zhou & Cui-jing Zhang & Peng-fei Liu & Lin Fu & Rafael Laso-Pérez & Lu Yang & Li-ping Bai & Jiang Li & Min Yang & Jun-zhang Lin & Wei-dong Wang & Gunter Wegener & Meng Li & Lei Cheng, 2022. "Non-syntrophic methanogenic hydrocarbon degradation by an archaeal species," Nature, Nature, vol. 601(7892), pages 257-262, January.
    5. D. Olefeldt & S. Goswami & G. Grosse & D. Hayes & G. Hugelius & P. Kuhry & A. D. McGuire & V. E. Romanovsky & A.B.K. Sannel & E.A.G. Schuur & M. R. Turetsky, 2016. "Circumpolar distribution and carbon storage of thermokarst landscapes," Nature Communications, Nature, vol. 7(1), pages 1-11, December.
    6. Boris K. Biskaborn & Sharon L. Smith & Jeannette Noetzli & Heidrun Matthes & Gonçalo Vieira & Dmitry A. Streletskiy & Philippe Schoeneich & Vladimir E. Romanovsky & Antoni G. Lewkowicz & Andrey Abramo, 2019. "Permafrost is warming at a global scale," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    7. Joshua F. Dean & Ove H. Meisel & Melanie Martyn Rosco & Luca Belelli Marchesini & Mark H. Garnett & Henk Lenderink & Richard van Logtestijn & Alberto V. Borges & Steven Bouillon & Thibault Lambert & T, 2020. "East Siberian Arctic inland waters emit mostly contemporary carbon," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    8. Clayton D. Elder & Xiaomei Xu & Jennifer Walker & Jordan L. Schnell & Kenneth M. Hinkel & Amy Townsend-Small & Christopher D. Arp & John W. Pohlman & Benjamin V. Gaglioti & Claudia I. Czimczik, 2018. "Greenhouse gas emissions from diverse Arctic Alaskan lakes are dominated by young carbon," Nature Climate Change, Nature, vol. 8(2), pages 166-171, February.
    9. K. M. Walter & S. A. Zimov & J. P. Chanton & D. Verbyla & F. S. Chapin, 2006. "Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming," Nature, Nature, vol. 443(7107), pages 71-75, September.
    10. Joshua F. Dean & Ove H. Meisel & Melanie Martyn Rosco & Luca Belelli Marchesini & Mark H. Garnett & Henk Lenderink & Richard Logtestijn & Alberto V. Borges & Steven Bouillon & Thibault Lambert & Thoma, 2020. "Publisher Correction: East Siberian Arctic inland waters emit mostly contemporary carbon," Nature Communications, Nature, vol. 11(1), pages 1-1, December.
    11. S. V. Kokelj & M. T. Jorgenson, 2013. "Advances in Thermokarst Research," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 24(2), pages 108-119, April.
    12. Feng Cheng & Carmala Garzione & Xiangzhong Li & Ulrich Salzmann & Florian Schwarz & Alan M. Haywood & Julia Tindall & Junsheng Nie & Lin Li & Lin Wang & Benjamin W. Abbott & Ben Elliott & Weiguo Liu &, 2022. "Alpine permafrost could account for a quarter of thawed carbon based on Plio-Pleistocene paleoclimate analogue," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. S. Serikova & O. S. Pokrovsky & H. Laudon & I. V. Krickov & A. G. Lim & R. M. Manasypov & J. Karlsson, 2019. "High carbon emissions from thermokarst lakes of Western Siberia," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Pedro Rodríguez-López & Chihua Wu & Tatiana A. Vishnivetskaya & Julian B. Murton & Wenqiang Tang & Chao Ma, 2022. "Permafrost in the Cretaceous supergreenhouse," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Jie Hu & Luyao Kang & Ziliang Li & Xuehui Feng & Caifan Liang & Zan Wu & Wei Zhou & Xuning Liu & Yuanhe Yang & Leiyi Chen, 2023. "Photo-produced aromatic compounds stimulate microbial degradation of dissolved organic carbon in thermokarst lakes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Jens Strauss & Christina Biasi & Tina Sanders & Benjamin W. Abbott & Thomas Schneider Deimling & Carolina Voigt & Matthias Winkel & Maija E. Marushchak & Dan Kou & Matthias Fuchs & Marcus A. Horn & Lo, 2022. "A globally relevant stock of soil nitrogen in the Yedoma permafrost domain," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Rúna Í. Magnússon & Alexandra Hamm & Sergey V. Karsanaev & Juul Limpens & David Kleijn & Andrew Frampton & Trofim C. Maximov & Monique M. P. D. Heijmans, 2022. "Extremely wet summer events enhance permafrost thaw for multiple years in Siberian tundra," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Yating Chen & Xiao Cheng & Aobo Liu & Qingfeng Chen & Chengxin Wang, 2023. "Tracking lake drainage events and drained lake basin vegetation dynamics across the Arctic," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Liwei Zhang & Sibo Zhang & Xinghui Xia & Tom J. Battin & Shaoda Liu & Qingrui Wang & Ran Liu & Zhifeng Yang & Jinren Ni & Emily H. Stanley, 2022. "Unexpectedly minor nitrous oxide emissions from fluvial networks draining permafrost catchments of the East Qinghai-Tibet Plateau," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Natalya Misyurkeeva & Igor Buddo & Gleb Kraev & Aleksandr Smirnov & Alexey Nezhdanov & Ivan Shelokhov & Anna Kurchatova & Andrei Belonosov, 2022. "Periglacial Landforms and Fluid Dynamics in the Permafrost Domain: A Case from the Taz Peninsula, West Siberia," Energies, MDPI, vol. 15(8), pages 1-14, April.
    8. Stepan Prokopievich Varlamov & Yuri Borisovich Skachkov & Pavel Nikolaevich Skryabin, 2021. "Long-Term Variability in Ground Thermal State in Central Yakutia’s Tuymaada Valley," Land, MDPI, vol. 10(11), pages 1-22, November.
    9. Xingchen Huang & Yuning Zou & Cece Qiao & Qiumeng Liu & Jingwen Liu & Rui Kang & Lantian Ren & Wenge Wu, 2023. "Effects of Biological Nitrification Inhibitor on Nitrous Oxide and nosZ, nirK, nirS Denitrifying Bacteria in Paddy Soils," Sustainability, MDPI, vol. 15(6), pages 1-12, March.
    10. Hui Zhang & Minna Väliranta & Graeme T. Swindles & Marco A. Aquino-López & Donal Mullan & Ning Tan & Matthew Amesbury & Kirill V. Babeshko & Kunshan Bao & Anatoly Bobrov & Viktor Chernyshov & Marissa , 2022. "Recent climate change has driven divergent hydrological shifts in high-latitude peatlands," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    11. Alexey Desyatkin & Pavel Fedorov & Nikolay Filippov & Roman Desyatkin, 2020. "Climate Change and Its Influence on the Active Layer Depth in Central Yakutia," Land, MDPI, vol. 10(1), pages 1-13, December.
    12. Bruce R. Conard, 2013. "Some Challenges to Sustainability," Sustainability, MDPI, vol. 5(8), pages 1-14, August.
    13. Wenbing Yu & Fenglei Han & Weibo Liu & Stuart A. Harris, 2016. "Geohazards and thermal regime analysis of oil pipeline along the Qinghai–Tibet Plateau Engineering Corridor," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 193-209, August.
    14. Jannik Martens & Birgit Wild & Igor Semiletov & Oleg V. Dudarev & Örjan Gustafsson, 2022. "Circum-Arctic release of terrestrial carbon varies between regions and sources," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Mikel González-Eguino & Marc B. Neumann, 2016. "Significant implications of permafrost thawing for climate change control," Climatic Change, Springer, vol. 136(2), pages 381-388, May.
    16. Georgii A. Alexandrov & Veronika A. Ginzburg & Gregory E. Insarov & Anna A. Romanovskaya, 2021. "CMIP6 model projections leave no room for permafrost to persist in Western Siberia under the SSP5-8.5 scenario," Climatic Change, Springer, vol. 169(3), pages 1-11, December.
    17. Zhichao Xu & Wei Shan & Ying Guo & Chengcheng Zhang & Lisha Qiu, 2022. "Swamp Wetlands in Degraded Permafrost Areas Release Large Amounts of Methane and May Promote Wildfires through Friction Electrification," Sustainability, MDPI, vol. 14(15), pages 1-28, July.
    18. Gyutae Lee & Yunsik Kim, 2022. "Effects of Resistance Barriers to Service Robots on Alternative Attractiveness and Intention to Use," SAGE Open, , vol. 12(2), pages 21582440221, May.
    19. Roman Desyatkin & Matrena Okoneshnikova & Alexandra Ivanova & Maya Nikolaeva & Nikolay Filippov & Alexey Desyatkin, 2022. "Dynamics of Vegetation and Soil Cover of Pyrogenically Disturbed Areas of the Northern Taiga under Conditions of Thermokarst Development and Climate Warming," Land, MDPI, vol. 11(9), pages 1-21, September.
    20. Daniel J. Vecellio & Oliver W. Frauenfeld, 2022. "Surface and sub-surface drivers of autumn temperature increase over Eurasian permafrost," Climatic Change, Springer, vol. 172(1), pages 1-18, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38907-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.