IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62017-0.html
   My bibliography  Save this article

Volumetric quantifications and dynamics of areas undergoing retrogressive thaw slumping in the Northern Hemisphere

Author

Listed:
  • Chunli Dai

    (University of Florida)

  • Melissa K. Ward Jones

    (University of Alaska Fairbanks)

  • Jurjen van der Sluijs

    (Government of Northwest Territories)

  • Nina Nesterova

    (Helmholtz Centre for Polar and Marine Research
    University of Potsdam)

  • Ian M. Howat

    (The Ohio State University)

  • Anna K. Liljedahl

    (Woodwell Climate Research Center)

  • Bretwood Higman

    (Ground Truth Alaska)

  • Jeffrey T. Freymueller

    (Michigan State University)

  • Steven V. Kokelj

    (Government of Northwest Territories)

  • Sindhura Sriram

    (University of Florida)

Abstract

Retrogressive thaw slumping (RTS) is a mass-wasting process characterized by upslope backwasting and rapid thawing of ice-rich permafrost. High-resolution digital elevation models (DEMs) from ArcticDEM enable the volumetric and soil organic carbon quantification of medium to large disturbance areas undergoing RTS ( ≥10,000 m2) for the Northern Hemisphere. Using DEM time-series analysis and deep learning, we retrieve a total of 2747 disturbance areas undergoing active RTS with a total volume loss of (317.0 ± 0.3) × 106 m3 between 2012 and 2022. Here we show that climatic drivers of RTS activity exhibit latitudinal and regional variations, specifically, the number of precipitation-driven RTS decreases linearly as latitudes increase, whereas temperature-driven RTS increases sharply. Finally, we estimate that 96% of detected RTS thawed ~1.95 × 10–3 Pg carbon per year, equivalent to ~0.2% of annual gradual thaw emission estimates. Our results highlight the complexity of regional RTS dynamics and the importance of high resolution, long-term monitoring efforts.

Suggested Citation

  • Chunli Dai & Melissa K. Ward Jones & Jurjen van der Sluijs & Nina Nesterova & Ian M. Howat & Anna K. Liljedahl & Bretwood Higman & Jeffrey T. Freymueller & Steven V. Kokelj & Sindhura Sriram, 2025. "Volumetric quantifications and dynamics of areas undergoing retrogressive thaw slumping in the Northern Hemisphere," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62017-0
    DOI: 10.1038/s41467-025-62017-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62017-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62017-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Y. L. Shur & M. T. Jorgenson, 2007. "Patterns of permafrost formation and degradation in relation to climate and ecosystems," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 18(1), pages 7-19, January.
    2. S. V. Kokelj & M. T. Jorgenson, 2013. "Advances in Thermokarst Research," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 24(2), pages 108-119, April.
    3. Antoni G. Lewkowicz & Robert G. Way, 2019. "Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    4. Charlie Frye & Roger Sayre & Alexander B. Murphy & Deniz Karagülle & Moira Pippi & Mark Gilbert & Jaynya W. Richards, 2023. "Named Landforms of the World: A Geomorphological and Physiographic Compilation," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 113(8), pages 1762-1780, September.
    5. D. Olefeldt & S. Goswami & G. Grosse & D. Hayes & G. Hugelius & P. Kuhry & A. D. McGuire & V. E. Romanovsky & A.B.K. Sannel & E.A.G. Schuur & M. R. Turetsky, 2016. "Circumpolar distribution and carbon storage of thermokarst landscapes," Nature Communications, Nature, vol. 7(1), pages 1-11, December.
    6. S. V. Kokelj & T. C. Lantz & J. Kanigan & S. L. Smith & R. Coutts, 2009. "Origin and polycyclic behaviour of tundra thaw slumps, Mackenzie Delta region, Northwest Territories, Canada," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 20(2), pages 173-184, April.
    7. Melissa K. Ward Jones & Tobias Schwoerer & Glenna M. Gannon & Benjamin M. Jones & Mikhail Z. Kanevskiy & Iris Sutton & Brad St. Pierre & Christine St. Pierre & Jill Russell & David Russell, 2022. "Climate-driven expansion of northern agriculture must consider permafrost," Nature Climate Change, Nature, vol. 12(8), pages 699-703, August.
    8. I. Nitze & G. Grosse & B. M. Jones & V. E. Romanovsky & J. Boike, 2018. "Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    9. Julian Murton & Thomas Opel & Sebastian Wetterich & Kseniia Ashastina & Grigoriy Savvinov & Petr Danilov & Vasily Boeskorov, 2023. "Batagay megaslump: A review of the permafrost deposits, Quaternary environmental history, and recent development," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 34(3), pages 399-416, July.
    10. Boris K. Biskaborn & Sharon L. Smith & Jeannette Noetzli & Heidrun Matthes & Gonçalo Vieira & Dmitry A. Streletskiy & Philippe Schoeneich & Vladimir E. Romanovsky & Antoni G. Lewkowicz & Andrey Abramo, 2019. "Permafrost is warming at a global scale," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guibiao Yang & Zhihu Zheng & Benjamin W. Abbott & David Olefeldt & Christian Knoblauch & Yutong Song & Luyao Kang & Shuqi Qin & Yunfeng Peng & Yuanhe Yang, 2023. "Characteristics of methane emissions from alpine thermokarst lakes on the Tibetan Plateau," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Jens Strauss & Christina Biasi & Tina Sanders & Benjamin W. Abbott & Thomas Schneider Deimling & Carolina Voigt & Matthias Winkel & Maija E. Marushchak & Dan Kou & Matthias Fuchs & Marcus A. Horn & Lo, 2022. "A globally relevant stock of soil nitrogen in the Yedoma permafrost domain," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Joshua R. Thienpont & Claire O'Hagan & Steven V. Kokelj & Grace N. Hoskin & Michael F. J. Pisaric & John P. Smol & Emily Stewart & Jennifer B. Korosi, 2025. "A Framework for Understanding the Impacts of Thaw‐Driven Disturbance Regimes on Northern Lakes," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 36(1), pages 137-150, January.
    4. Eirini Makopoulou & Alix Varnajot, 2025. "Permafrost degradation-induced risks for nature-based tourism in the Arctic – case from the Yukon," Climatic Change, Springer, vol. 178(5), pages 1-9, May.
    5. Ping Lu & Jiangping Han, 2025. "Remote Sensing for Identification and Mapping of Thermokarst Landforms: A Review," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 36(2), pages 329-342, June.
    6. Georgii A. Alexandrov & Veronika A. Ginzburg & Gregory E. Insarov & Anna A. Romanovskaya, 2021. "CMIP6 model projections leave no room for permafrost to persist in Western Siberia under the SSP5-8.5 scenario," Climatic Change, Springer, vol. 169(3), pages 1-11, December.
    7. Roman Desyatkin & Matrena Okoneshnikova & Alexandra Ivanova & Maya Nikolaeva & Nikolay Filippov & Alexey Desyatkin, 2022. "Dynamics of Vegetation and Soil Cover of Pyrogenically Disturbed Areas of the Northern Taiga under Conditions of Thermokarst Development and Climate Warming," Land, MDPI, vol. 11(9), pages 1-21, September.
    8. Feng Cheng & Carmala Garzione & Xiangzhong Li & Ulrich Salzmann & Florian Schwarz & Alan M. Haywood & Julia Tindall & Junsheng Nie & Lin Li & Lin Wang & Benjamin W. Abbott & Ben Elliott & Weiguo Liu &, 2022. "Alpine permafrost could account for a quarter of thawed carbon based on Plio-Pleistocene paleoclimate analogue," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Rúna Í. Magnússon & Alexandra Hamm & Sergey V. Karsanaev & Juul Limpens & David Kleijn & Andrew Frampton & Trofim C. Maximov & Monique M. P. D. Heijmans, 2022. "Extremely wet summer events enhance permafrost thaw for multiple years in Siberian tundra," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Yating Chen & Xiao Cheng & Aobo Liu & Qingfeng Chen & Chengxin Wang, 2023. "Tracking lake drainage events and drained lake basin vegetation dynamics across the Arctic," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    11. Jannik Martens & Carsten W. Mueller & Prachi Joshi & Christoph Rosinger & Markus Maisch & Andreas Kappler & Michael Bonkowski & Georg Schwamborn & Lutz Schirrmeister & Janet Rethemeyer, 2023. "Stabilization of mineral-associated organic carbon in Pleistocene permafrost," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Cuicui Mu & Pengsi Lei & Mei Mu & Chunling Zhang & Zhensong Zhou & Jinyue Song & Yunjie Jia & Chenyan Fan & Xiaoqing Peng & Guofei Zhang & Yuanhe Yang & Lei Wang & Dongfeng Li & Chunlin Song & Genxu W, 2025. "Methane emissions from thermokarst lakes must emphasize the ice-melting impact on the Tibetan Plateau," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    13. Eva Stephani & Jeremiah Drage & Duane Miller & Benjamin M. Jones & Mikhail Kanevskiy, 2020. "Taliks, cryopegs, and permafrost dynamics related to channel migration, Colville River Delta, Alaska," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(2), pages 239-254, April.
    14. Juan Pedro Rodríguez-López & Chihua Wu & Tatiana A. Vishnivetskaya & Julian B. Murton & Wenqiang Tang & Chao Ma, 2022. "Permafrost in the Cretaceous supergreenhouse," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    15. Jinlong Li & Genxu Wang & Chunlin Song & Shouqin Sun & Jiapei Ma & Ying Wang & Linmao Guo & Dongfeng Li, 2024. "Recent intensified erosion and massive sediment deposition in Tibetan Plateau rivers," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Ying Guo & Shuai Liu & Lisha Qiu & Chengcheng Zhang & Wei Shan, 2024. "Spatial stratified heterogeneity analysis of field scale permafrost in Northeast China based on optimal parameters-based geographical detector," PLOS ONE, Public Library of Science, vol. 19(2), pages 1-22, February.
    17. Hongwei Wang & Huijun Jin & Tao Che & Xiaoying Li & Liyun Dai & Yuan Qi & Chunlin Huang & Ruixia He & Jinlong Zhang & Rui Yang & Dongliang Luo & Xiaoying Jin, 2024. "Influences of Snow Cover on the Thermal Regimes of Xing'an Permafrost in Northeast China in 1960s–2010s," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 35(2), pages 188-201, April.
    18. Felix C. Nwaishi & Matthew Q. Morison & Brandon Van Huizen & Myroslava Khomik & Richard M. Petrone & Merrin L. Macrae, 2020. "Growing season CO2 exchange and evapotranspiration dynamics among thawing and intact permafrost landforms in the Western Hudson Bay lowlands," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(4), pages 509-523, October.
    19. Ionut Cristi Nicu & Knut Stalsberg & Lena Rubensdotter & Vibeke Vandrup Martens & Anne-Cathrine Flyen, 2020. "Coastal Erosion Affecting Cultural Heritage in Svalbard. A Case Study in Hiorthhamn (Adventfjorden)—An Abandoned Mining Settlement," Sustainability, MDPI, vol. 12(6), pages 1-21, March.
    20. Clare B Gaffey & Narissa Bax & Naomi Krauzig & Kévin Tougeron, 2024. "A call to strengthen international collaboration to assess climate change effects in polar regions," PLOS Climate, Public Library of Science, vol. 3(10), pages 1-25, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62017-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.