Author
Listed:
- Mingzhen Lu
(Santa Fe Institute
Stanford University
New York University)
- Sili Wang
(Columbia University)
- Avni Malhotra
(Stanford University
University of Zurich
Pacific Northwest National Laboratory)
- Shersingh Joseph Tumber-Dávila
(Stanford University
Harvard University
Dartmouth College)
- Samantha Weintraub-Leff
(Battelle)
- M. Luke McCormack
(The Morton Arboretum)
- Xingchen Tony Wang
(Boston College)
- Robert B. Jackson
(Stanford University
Stanford University)
Abstract
An improved understanding of root vertical distribution is crucial for assessing plant-soil-atmosphere interactions and their influence on the land carbon sink. Here, we analyze a continental-scale dataset of fine roots reaching 2 meters depth, spanning from Alaskan tundra to Puerto Rican forests. Contrary to the expectation that fine root abundance decays exponentially with depth, we found root bimodality at ~20% of 44 sites, with secondary biomass peaks often below 1 m. Root bimodality was more likely in areas with low total fine root biomass and was more frequent in shrublands than grasslands. Notably, secondary peaks coincided with high soil nitrogen content at depth. Our analyses suggest that deep soil nutrients tend to be underexploited, while root bimodality offers plants a mechanism to tap into deep soil resources. Our findings add to the growing recognition that deep soil dynamics are systematically overlooked, and calls for more research attention to this deep frontier in the face of global environmental change.
Suggested Citation
Mingzhen Lu & Sili Wang & Avni Malhotra & Shersingh Joseph Tumber-Dávila & Samantha Weintraub-Leff & M. Luke McCormack & Xingchen Tony Wang & Robert B. Jackson, 2025.
"A continental scale analysis reveals widespread root bimodality,"
Nature Communications, Nature, vol. 16(1), pages 1-10, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60055-2
DOI: 10.1038/s41467-025-60055-2
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60055-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.