IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v309y2025ics0378377425000538.html
   My bibliography  Save this article

How water–energy–food services and their interactions change along multiple environmental gradients

Author

Listed:
  • Deng, Guangyi
  • Jiang, Haibo
  • Ma, Shuai
  • Wen, Yang
  • He, Chunguang
  • Sheng, Lianxi
  • Gu, Dehai

Abstract

With climate change and ongoing socioeconomic development, issues related to water, energy, and food security are becoming more pressing, threatening human well-being. Under the influence of environmental factors, water–energy–food resources exhibit significant spatial heterogeneity. However, limited information exists on how water–energy–food services and their interactions respond to various environmental gradients. Using the Songhua River Basin as a case study, this study quantified the spatiotemporal variation and interaction between water–energy–food services (water yield, net primary productivity, and food production) from 2001 to 2020, investigated changes in water–energy–food services and their interactions with each environmental gradient (elevation, precipitation, temperature, and vegetation cover) using a generalized additive model, and explored the underlying mechanism of interactions between water–energy–food services under different environmental gradients based on a structural equation model. The results indicated that water, energy, and food services increased significantly (p < 0.01) by 4.33 mm/yr, 4.09 gC/m2·yr, and 0.06 t/ha·yr, respectively. A trade-off between water–energy services was observed in 12.36 % of the southern regions. Water–energy–food services exhibited distinct nonlinear changes with multiple environmental gradients, with several key threshold inflection points identified. As elevation and precipitation increased, the synergy between water–energy services weakened, shifted to a trade-off, and then strengthened. Human activities contributed to water–food services but restricted energy services. Photosynthesis, evapotranspiration, and vegetation cover were identified as the main factors influencing the interactions between water, energy, and food services, driven by competitive relationships under different environmental gradients. This study provides a significant basis for ecosystem management strategies under various environmental gradients.

Suggested Citation

  • Deng, Guangyi & Jiang, Haibo & Ma, Shuai & Wen, Yang & He, Chunguang & Sheng, Lianxi & Gu, Dehai, 2025. "How water–energy–food services and their interactions change along multiple environmental gradients," Agricultural Water Management, Elsevier, vol. 309(C).
  • Handle: RePEc:eee:agiwat:v:309:y:2025:i:c:s0378377425000538
    DOI: 10.1016/j.agwat.2025.109339
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377425000538
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2025.109339?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Mengdi Gao & Shilong Piao & Anping Chen & Hui Yang & Qiang Liu & Yongshuo H. Fu & Ivan A. Janssens, 2019. "Divergent changes in the elevational gradient of vegetation activities over the last 30 years," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    2. Shen, Jiashu & Li, Shuangcheng & Liang, Ze & Liu, Laibao & Li, Delong & Wu, Shuyao, 2020. "Exploring the heterogeneity and nonlinearity of trade-offs and synergies among ecosystem services bundles in the Beijing-Tianjin-Hebei urban agglomeration," Ecosystem Services, Elsevier, vol. 43(C).
    3. Zhenci Xu & Sophia N. Chau & Xiuzhi Chen & Jian Zhang & Yingjie Li & Thomas Dietz & Jinyan Wang & Julie A. Winkler & Fan Fan & Baorong Huang & Shuxin Li & Shaohua Wu & Anna Herzberger & Ying Tang & De, 2020. "Assessing progress towards sustainable development over space and time," Nature, Nature, vol. 577(7788), pages 74-78, January.
    4. Chi Chen & Taejin Park & Xuhui Wang & Shilong Piao & Baodong Xu & Rajiv K. Chaturvedi & Richard Fuchs & Victor Brovkin & Philippe Ciais & Rasmus Fensholt & Hans Tømmervik & Govindasamy Bala & Zaichun , 2019. "China and India lead in greening of the world through land-use management," Nature Sustainability, Nature, vol. 2(2), pages 122-129, February.
    5. Raimund Bleischwitz & Catalina Spataru & Stacy D. VanDeveer & Michael Obersteiner & Ester Voet & Corey Johnson & Philip Andrews-Speed & Tim Boersma & Holger Hoff & Detlef P. Vuuren, 2018. "Resource nexus perspectives towards the United Nations Sustainable Development Goals," Nature Sustainability, Nature, vol. 1(12), pages 737-743, December.
    6. Zhang, Hongjuan & Gao, Yan & Hua, Yawei & Zhang, Yue & Liu, Kang, 2019. "Assessing and mapping recreationists’ perceived social values for ecosystem services in the Qinling Mountains, China," Ecosystem Services, Elsevier, vol. 39(C).
    7. Peng, Jian & Tian, Lu & Zhang, Zimo & Zhao, Yan & Green, Sophie M. & Quine, Timothy A. & Liu, Hongyan & Meersmans, Jeroen, 2020. "Distinguishing the impacts of land use and climate change on ecosystem services in a karst landscape in China," Ecosystem Services, Elsevier, vol. 46(C).
    8. Mahsa Mirdashtvan & Ali Najafinejad & Arash Malekian & Amir Sa’doddin, 2021. "Sustainable Water Supply and Demand Management in Semi-arid Regions: Optimizing Water Resources Allocation Based on RCPs Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5307-5324, December.
    9. Shirmohammadi, Bagher & Malekian, Arash & Salajegheh, Ali & Taheri, Bahram & Azarnivand, Hossein & Malek, Ziga & Verburg, Peter H., 2020. "Scenario analysis for integrated water resources management under future land use change in the Urmia Lake region, Iran," Land Use Policy, Elsevier, vol. 90(C).
    10. Peng, Jian & Hu, Xiaoxu & Wang, Xiaoyu & Meersmans, Jeroen & Liu, Yanxu & Qiu, Sijing, 2019. "Simulating the impact of Grain-for-Green Programme on ecosystem services trade-offs in Northwestern Yunnan, China," Ecosystem Services, Elsevier, vol. 39(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Shuai & Wang, Liang-Jie & Chu, Lei & Jiang, Jiang, 2023. "Determination of ecological restoration patterns based on water security and food security in arid regions," Agricultural Water Management, Elsevier, vol. 278(C).
    2. Ke Li & Lei Gao & Zhaoxia Guo & Yucheng Dong & Enayat A. Moallemi & Gang Kou & Meiqian Chen & Wenhao Lin & Qi Liu & Michael Obersteiner & Matteo Pedercini & Brett A. Bryan, 2024. "Safeguarding China’s long-term sustainability against systemic disruptors," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Wang, Jie & Zhang, Yuzhen & Zhang, Xiaoling & Song, Mengqiao & Ye, Jianping, 2023. "The spatio-temporal trends of urban green space and its interactions with urban growth: Evidence from the Yangtze River Delta region, China," Land Use Policy, Elsevier, vol. 128(C).
    4. Wang, Xiaoyu & Peng, Jian & Luo, Yuhang & Qiu, Sijing & Dong, Jianquan & Zhang, Zimo & Vercruysse, Kim & Grabowski, Robert C. & Meersmans, Jeroen, 2022. "Exploring social-ecological impacts on trade-offs and synergies among ecosystem services," Ecological Economics, Elsevier, vol. 197(C).
    5. Ma, Shuaishuai & Zhang, Huayong & Wang, Zhongyu & Zou, Hengchao & Xu, Xiaona, 2025. "Drivers of aboveground biomass in Quercus wutaishanica Mayr forests based on random forest and structural equation modeling: A cross-scale analysis," Ecological Modelling, Elsevier, vol. 505(C).
    6. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    7. Hu, Xueyue & Wang, Chunying & Elshkaki, Ayman, 2024. "Material-energy Nexus: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    8. Manal Ammari & Mohammed Chentouf & Mohammed Ammari & Laïla Ben Allal, 2022. "Assessing National Progress in Achieving the Sustainable Development Goals: A Case Study of Morocco," Sustainability, MDPI, vol. 14(23), pages 1-29, November.
    9. Chi Zhang & Zhongchang Sun & Qiang Xing & Jialong Sun & Tianyu Xia & Hao Yu, 2021. "Localizing Indicators of SDG11 for an Integrated Assessment of Urban Sustainability—A Case Study of Hainan Province," Sustainability, MDPI, vol. 13(19), pages 1-14, October.
    10. Xiaojun Zhang & Weiqiao Wang & Yunan Bai & Yong Ye, 2022. "How Has China Structured Its Ecological Governance Policy System?—A Case from Fujian Province," IJERPH, MDPI, vol. 19(14), pages 1-22, July.
    11. Zhao, Mengxue & Chan, Hon S., 2024. "Balancing through agglomeration: A third path to sustainable development between common prosperity and carbon neutrality in China," Technological Forecasting and Social Change, Elsevier, vol. 208(C).
    12. Zhenshan Yang & Runde Fu & Jiang Zhu & Dongqi Sun, 2024. "Multidimensional assessment of regional inequality toward sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(1), pages 392-403, February.
    13. Han, Bo & Jin, Xiaobin & Sun, Rui & Li, Hanbing & Liang, Xinyuan & Zhou, Yinkang, 2023. "Understanding land-use sustainability with a systematical framework: An evaluation case of China," Land Use Policy, Elsevier, vol. 132(C).
    14. Jingan Chen & Chengdong Yi & Yourong Wang & Tianyu Bi, 2022. "Do Honored Cities Achieve a Sustainable Development? A Quasi-Natural Experimental Study Based on “National Civilized City” Campaign in China," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    15. Tao, Jieyi & Lu, Yuqi & Ge, Dazhuan & Dong, Ping & Gong, Xiao & Ma, Xiaobin, 2022. "The spatial pattern of agricultural ecosystem services from the production-living-ecology perspective: A case study of the Huaihai Economic Zone, China," Land Use Policy, Elsevier, vol. 122(C).
    16. Kaiping Wang & Weiqi Wang & Niyi Zha & Yue Feng & Chenlan Qiu & Yunlu Zhang & Jia Ma & Rui Zhang, 2022. "Spatially Heterogeneity Response of Critical Ecosystem Service Capacity to Address Regional Development Risks to Rapid Urbanization: The Case of Beijing-Tianjin-Hebei Urban Agglomeration in China," Sustainability, MDPI, vol. 14(12), pages 1-21, June.
    17. Nikolai Dronin, 2023. "Reasons to rename the UNCCD: Review of transformation of the political concept through the influence of science," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2058-2078, March.
    18. Sung Jin Kang & Seon Ju Lee & Shijun Cao, 2024. "Linking the UN SDGs and Sustainable Development Progress: The Case of China," Global Journal of Emerging Market Economies, Emerging Markets Forum, vol. 16(3), pages 371-391, September.
    19. Pinki Mondal & Sonali Shukla McDermid, 2021. "Editorial for Special Issue: “Global Vegetation and Land Surface Dynamics in a Changing Climate”," Land, MDPI, vol. 10(1), pages 1-4, January.
    20. Pires, Aliny P.F. & Rodriguez Soto, Clarita & Scarano, Fabio R., 2021. "Strategies to reach global sustainability should take better account of ecosystem services," Ecosystem Services, Elsevier, vol. 49(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:309:y:2025:i:c:s0378377425000538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.