IDEAS home Printed from https://ideas.repec.org/a/nas/journl/v119y2022pe2120025119.html
   My bibliography  Save this article

Geographic microtargeting of social assistance with high-resolution poverty maps

Author

Listed:
  • Isabella S. Smythe

    (a School of International and Public Affairs, Columbia University, New York, NY 10027;)

  • Joshua E. Blumenstock

    (b School of Information, University of California, Berkeley, CA 94720)

Abstract

Many antipoverty programs use geographic targeting to prioritize benefits to people living in specific locations. This paper shows that high-resolution poverty maps, constructed with machine learning algorithms from satellite imagery, can improve the geographic targeting of benefits to the poorest members of society. This approach was used by the Nigerian government to distribute benefits to millions of the extreme poor. As high-resolution poverty maps become globally available, these results can inform the design and implementation of social assistance programs worldwide.

Suggested Citation

  • Isabella S. Smythe & Joshua E. Blumenstock, 2022. "Geographic microtargeting of social assistance with high-resolution poverty maps," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 119(32), pages 2120025119-, August.
  • Handle: RePEc:nas:journl:v:119:y:2022:p:e2120025119
    as

    Download full text from publisher

    File URL: http://www.pnas.org/content/119/32/e2120025119.full
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brown, Caitlin & Ravallion, Martin & van de Walle, Dominique, 2018. "A poor means test? Econometric targeting in Africa," Journal of Development Economics, Elsevier, vol. 134(C), pages 109-124.
    2. Joshua E. Blumenstock, 2018. "Estimating Economic Characteristics with Phone Data," AEA Papers and Proceedings, American Economic Association, vol. 108, pages 72-76, May.
    3. Joshua Blumenstock, 2018. "Don’t forget people in the use of big data for development," Nature, Nature, vol. 561(7722), pages 170-172, September.
    4. Nichols, D & Smolensky, E & Tideman, T N, 1971. "Discrimination by Waiting Time in Merit Goods," American Economic Review, American Economic Association, vol. 61(3), pages 312-323, June.
    5. Baker, Judy L. & Grosh, Margaret E., 1994. "Poverty reduction through geographic targeting: How well does it work?," World Development, Elsevier, vol. 22(7), pages 983-995, July.
    6. Elbers, Chris & Fujii, Tomoki & Lanjouw, Peter & Ozler, Berk & Yin, Wesley, 2007. "Poverty alleviation through geographic targeting: How much does disaggregation help?," Journal of Development Economics, Elsevier, vol. 83(1), pages 198-213, May.
    7. Norbert R. Schady, 2002. "Picking the Poor: Indicators for Geographic Targeting in Peru," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 48(3), pages 417-433, September.
    8. Tara Bedi & Aline Coudouel & Kenneth Simler, 2007. "More Than a Pretty Picture : Using Poverty Maps to Design Better Policies and Interventions," World Bank Publications - Books, The World Bank Group, number 6800, April.
    9. Hai‐Anh Dang & Dean Jolliffe & Calogero Carletto, 2019. "Data Gaps, Data Incomparability, And Data Imputation: A Review Of Poverty Measurement Methods For Data‐Scarce Environments," Journal of Economic Surveys, Wiley Blackwell, vol. 33(3), pages 757-797, July.
    10. repec:bla:revinw:v:48:y:2002:i:3:p:417-33 is not listed on IDEAS
    11. Guanghua Chi & Han Fang & Sourav Chatterjee & Joshua E. Blumenstock, 2022. "Microestimates of wealth for all low- and middle-income countries," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 119(3), pages 2113658119-, January.
    12. Rema Hanna & Benjamin A. Olken, 2018. "Universal Basic Incomes versus Targeted Transfers: Anti-Poverty Programs in Developing Countries," Journal of Economic Perspectives, American Economic Association, vol. 32(4), pages 201-226, Fall.
    13. Deon Filmer & Lant Pritchett, 2001. "Estimating Wealth Effects Without Expenditure Data—Or Tears: An Application To Educational Enrollments In States Of India," Demography, Springer;Population Association of America (PAA), vol. 38(1), pages 115-132, February.
    14. Emily Aiken & Suzanne Bellue & Dean Karlan & Chris Udry & Joshua E. Blumenstock, 2022. "Machine learning and phone data can improve targeting of humanitarian aid," Nature, Nature, vol. 603(7903), pages 864-870, March.
    15. Emily Aiken & Guadalupe Bedoya & Joshua Blumenstock & Aidan Coville, 2022. "Program Targeting with Machine Learning and Mobile Phone Data: Evidence from an Anti-Poverty Intervention in Afghanistan," Papers 2206.11400, arXiv.org.
    16. Christopher Yeh & Anthony Perez & Anne Driscoll & George Azzari & Zhongyi Tang & David Lobell & Stefano Ermon & Marshall Burke, 2020. "Using publicly available satellite imagery and deep learning to understand economic well-being in Africa," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    17. William Nordhaus & Xi Chen, 2015. "A sharper image? Estimates of the precision of nighttime lights as a proxy for economic statistics," Journal of Economic Geography, Oxford University Press, vol. 15(1), pages 217-246.
    18. repec:wbk:wbrwps:10252 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. van der Weide, Roy & Blankespoor, Brian & Elbers, Chris & Lanjouw, Peter, 2024. "How accurate is a poverty map based on remote sensing data? An application to Malawi," Journal of Development Economics, Elsevier, vol. 171(C).
    2. Tim Ohlenburg & Emil Tesliuc & Yuko Okamura, 2024. "Scaling up Social Assistance Where Data is Scarce : Opportunities and Limits of Novel Data and AI," Social Protection Discussion Papers and Notes 189993, The World Bank.
    3. Corral, Paul & Henderson, Heath & Segovia, Sandra, 2025. "Poverty mapping in the age of machine learning," Journal of Development Economics, Elsevier, vol. 172(C).
    4. Yuko Okamura & Tim Ohlenburg & Emil Tesliuc, 2024. "Scaling Up Social Assistance Where Data is Scarce - Opportunities and Limits of Novel Data and AI," World Bank Publications - Reports 41553, The World Bank Group.
    5. Beuermann, Diether W. & Hoffmann, Bridget & Stampini, Marco & Vargas, David L. & Vera-Cossio, Diego, 2025. "Shooting a moving target: Evaluating targeting tools for social programs when income fluctuates," Journal of Development Economics, Elsevier, vol. 172(C).
    6. Sinha Roy, Sutirtha & van der Weide, Roy, 2025. "Estimating poverty for India after 2011 using private-sector survey data," Journal of Development Economics, Elsevier, vol. 172(C).
    7. Yuko Okamura & Tim Ohlenburg & Emil Tesliuc, 2024. "Scaling up Social Assistance Where Data is Scarce," World Bank Publications - Reports 41548, The World Bank Group.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emily Aiken & Suzanne Bellue & Dean Karlan & Christopher R. Udry & Joshua Blumenstock, 2021. "Machine Learning and Mobile Phone Data Can Improve the Targeting of Humanitarian Assistance," NBER Working Papers 29070, National Bureau of Economic Research, Inc.
    2. Aiken, Emily L. & Bedoya, Guadalupe & Blumenstock, Joshua E. & Coville, Aidan, 2023. "Program targeting with machine learning and mobile phone data: Evidence from an anti-poverty intervention in Afghanistan," Journal of Development Economics, Elsevier, vol. 161(C).
    3. van der Weide, Roy & Blankespoor, Brian & Elbers, Chris & Lanjouw, Peter, 2024. "How accurate is a poverty map based on remote sensing data? An application to Malawi," Journal of Development Economics, Elsevier, vol. 171(C).
    4. Corral, Paul & Henderson, Heath & Segovia, Sandra, 2025. "Poverty mapping in the age of machine learning," Journal of Development Economics, Elsevier, vol. 172(C).
    5. Paolo Verme, 2023. "Predicting Poverty with Missing Incomes," Working Papers 642, ECINEQ, Society for the Study of Economic Inequality.
    6. Dang,Hai-Anh H., 2018. "To impute or not to impute ? a review of alternative poverty estimation methods in the context of unavailable consumption data," Policy Research Working Paper Series 8403, The World Bank.
    7. Corral Rodas,Paul Andres & Henderson,Heath Linn & Segovia Juarez,Sandra Carolina, 2023. "Poverty Mapping in the Age of Machine Learning," Policy Research Working Paper Series 10429, The World Bank.
    8. Lee, Kamwoo & Braithwaite, Jeanine, 2022. "High-resolution poverty maps in Sub-Saharan Africa," World Development, Elsevier, vol. 159(C).
    9. Guanghua Chi & Han Fang & Sourav Chatterjee & Joshua E. Blumenstock, 2022. "Microestimates of wealth for all low- and middle-income countries," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 119(3), pages 2113658119-, January.
    10. Hai‐Anh H. Dang & Talip Kilic & Kseniya Abanokova & Calogero Carletto, 2025. "Poverty Imputation in Contexts Without Consumption Data: A Revisit With Further Refinements," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 71(1), February.
    11. Emily Aiken & Guadalupe Bedoya & Joshua Blumenstock & Aidan Coville, 2022. "Program Targeting with Machine Learning and Mobile Phone Data: Evidence from an Anti-Poverty Intervention in Afghanistan," Papers 2206.11400, arXiv.org.
    12. Alix-Garcia, Jennifer M. & Sims, Katharine R.E. & Costica, Laura, 2021. "Better to be indirect? Testing the accuracy and cost-savings of indirect surveys," World Development, Elsevier, vol. 142(C).
    13. Chikako Yamauchi, 2010. "Community-Based Targeting and Initial Local Conditions: Evidence from Indonesia's IDT Program," Economic Development and Cultural Change, University of Chicago Press, vol. 59(1), pages 95-147, October.
    14. Beuermann, Diether W. & Hoffmann, Bridget & Stampini, Marco & Vargas, David L. & Vera-Cossio, Diego, 2025. "Shooting a moving target: Evaluating targeting tools for social programs when income fluctuates," Journal of Development Economics, Elsevier, vol. 172(C).
    15. Haseeb, Muhammad & Vyborny, Kate, 2022. "Data, discretion and institutional capacity: Evidence from cash transfers in Pakistan," Journal of Public Economics, Elsevier, vol. 206(C).
    16. Hai‐Anh H. Dang, 2021. "To impute or not to impute, and how? A review of poverty‐estimation methods in the absence of consumption data," Development Policy Review, Overseas Development Institute, vol. 39(6), pages 1008-1030, November.
    17. Peter Lanjouw & Marleen Marra & Cuong Nguyen, 2017. "Vietnam’s Evolving Poverty Index Map: Patterns and Implications for Policy," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 133(1), pages 93-118, August.
    18. Dang, Hai-Anh H & Lanjouw, Peter F., 2021. "Data Scarcity and Poverty Measurement," IZA Discussion Papers 14631, Institute of Labor Economics (IZA).
    19. Lanjouw, Peter & Marra, Marleen & Nguyen, Cuong, 2013. "Vietnam's evolving poverty map : patterns and implications for policy," Policy Research Working Paper Series 6355, The World Bank.
    20. Till Koebe & Alejandra Arias-Salazar & Timo Schmid, 2023. "Releasing survey microdata with exact cluster locations and additional privacy safeguards," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nas:journl:v:119:y:2022:p:e2120025119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: PNAS Product Team (email available below). General contact details of provider: http://www.pnas.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.