IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v52y2025i3d10.1007_s11116-023-10452-7.html
   My bibliography  Save this article

Effects of data aggregation (buffer) techniques on bicycle volume estimation

Author

Listed:
  • Md Mintu Miah

    (University of California, Berkeley)

  • Stephen P. Mattingly

    (The University of Texas at Arlington)

  • Kate Kyung Hyun

    (The University of Texas at Arlington)

  • Joseph Broach

    (Portland State University)

  • Nathan McNeil

    (Portland State University)

  • Sirisha Kothuri

    (Portland State University)

Abstract

Researchers and practitioners commonly use a Direct Demand Model (DDM), which uses link, distance, and buffered variables (e.g., land use) to predict Annual Average Daily Bicycle Traffic (AADBT). Past studies deploy random buffer size combinations to find the best-fit variables for their specific DDMs. However, none of these studies seek to identify the best buffer types and sizes, and only a few past studies investigate the impacts of local characteristics on buffer type and size selection. Therefore, this study aims to determine the best buffer types and sizes and evaluate the impact of local characteristics on buffer type and size selection. To select the preferred buffer type and size, this study tests two types (Network and Euclidean) of buffers with seven unique sizes (0.1, 0.25, 0.50, 0.75, 1.0, 1.50, and 2.0 miles) and their combination for six different geographies (Portland, Eugene, Bend, Boulder, Charlotte, and Dallas). This study develops a total of 168 cross-validated (10 folds 5 repeats) generalized and city-specific Poisson regression models using emerging data sources (i.e., Strava, StreetLight) and contextual variables. Results recommend that a generalized model with the combination of Network and Euclidean buffers of multiple sizes provide the best prediction of AADBT, and Network buffers outperform Euclidean buffers. However, city-specific models with a single type and size of buffer sometimes outperform the generalized model. Network density determines the types and sizes of buffers. This research will help policymakers and modelers understand the sizes and types of buffers required to extract the variables to construct a DDM for AADBT estimations.

Suggested Citation

  • Md Mintu Miah & Stephen P. Mattingly & Kate Kyung Hyun & Joseph Broach & Nathan McNeil & Sirisha Kothuri, 2025. "Effects of data aggregation (buffer) techniques on bicycle volume estimation," Transportation, Springer, vol. 52(3), pages 1147-1190, June.
  • Handle: RePEc:kap:transp:v:52:y:2025:i:3:d:10.1007_s11116-023-10452-7
    DOI: 10.1007/s11116-023-10452-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-023-10452-7
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-023-10452-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Higuera-Mendieta, Diana & Uriza, Pablo Andrés & Cabrales, Sergio A. & Medaglia, Andrés L. & Guzman, Luis A. & Sarmiento, Olga L., 2021. "Is the built-environment at origin, on route, and at destination associated with bicycle commuting? A gender-informed approach," Journal of Transport Geography, Elsevier, vol. 94(C).
    2. Kuhn, Max, 2008. "Building Predictive Models in R Using the caret Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i05).
    3. Boeing, Geoff, 2017. "OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street Networks," SocArXiv q86sd, Center for Open Science.
    4. repec:osf:socarx:q86sd_v1 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prabal Das & D. A. Sachindra & Kironmala Chanda, 2022. "Machine Learning-Based Rainfall Forecasting with Multiple Non-Linear Feature Selection Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6043-6071, December.
    2. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Piaopiao Chen & Agnès H. Michel & Jianzhi Zhang, 2022. "Transposon insertional mutagenesis of diverse yeast strains suggests coordinated gene essentiality polymorphisms," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Paulo Infante & Gonçalo Jacinto & Anabela Afonso & Leonor Rego & Pedro Nogueira & Marcelo Silva & Vitor Nogueira & José Saias & Paulo Quaresma & Daniel Santos & Patrícia Góis & Paulo Rebelo Manuel, 2023. "Factors That Influence the Type of Road Traffic Accidents: A Case Study in a District of Portugal," Sustainability, MDPI, vol. 15(3), pages 1-16, January.
    5. Li, Li & Li, Han & Panagiotelis, Anastasios, 2025. "Boosting domain-specific models with shrinkage: An application in mortality forecasting," International Journal of Forecasting, Elsevier, vol. 41(1), pages 191-207.
    6. Ephrem Habyarimana & Faheem S Baloch, 2021. "Machine learning models based on remote and proximal sensing as potential methods for in-season biomass yields prediction in commercial sorghum fields," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-23, March.
    7. Banks, Jonathan & Rabbani, Arif & Nadkarni, Kabir & Renaud, Evan, 2020. "Estimating parasitic loads related to brine production from a hot sedimentary aquifer geothermal project: A case study from the Clarke Lake gas field, British Columbia," Renewable Energy, Elsevier, vol. 153(C), pages 539-552.
    8. Matteo Böhm & Mirco Nanni & Luca Pappalardo, 2022. "Gross polluters and vehicle emissions reduction," Nature Sustainability, Nature, vol. 5(8), pages 699-707, August.
    9. Shah, Nitesh R. & Ziedan, Abubakr & Brakewood, Candace & Cherry, Christopher R., 2023. "Shared e-scooter service providers with large fleet size have a competitive advantage: Findings from e-scooter demand and supply analysis of Nashville, Tennessee," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    10. Crespo, Cristian, 2020. "Two become one: improving the targeting of conditional cash transfers with a predictive model of school dropout," LSE Research Online Documents on Economics 123139, London School of Economics and Political Science, LSE Library.
    11. María Adelaida Gómez & Ashton Trey Belew & Deninson Alejandro Vargas & Lina Giraldo-Parra & Neal Alexander & David E. Rebellón-Sánchez & Theresa A. Alexander & Najib M. El-Sayed, 2025. "Innate biosignature of treatment failure in human cutaneous leishmaniasis," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    12. Alexander Wettstein & Gabriel Jenni & Ida Schneider & Fabienne Kühne & Martin grosse Holtforth & Roberto La Marca, 2023. "Predictors of Psychological Strain and Allostatic Load in Teachers: Examining the Long-Term Effects of Biopsychosocial Risk and Protective Factors Using a LASSO Regression Approach," IJERPH, MDPI, vol. 20(10), pages 1-20, May.
    13. Tang, Kayu & Parsons, David J. & Jude, Simon, 2019. "Comparison of automatic and guided learning for Bayesian networks to analyse pipe failures in the water distribution system," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 24-36.
    14. Daifeng Xiang & Gangsheng Wang & Jing Tian & Wanyu Li, 2023. "Global patterns and edaphic-climatic controls of soil carbon decomposition kinetics predicted from incubation experiments," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    15. Joel Podgorski & Oliver Kracht & Luis Araguas-Araguas & Stefan Terzer-Wassmuth & Jodie Miller & Ralf Straub & Rolf Kipfer & Michael Berg, 2024. "Groundwater vulnerability to pollution in Africa’s Sahel region," Nature Sustainability, Nature, vol. 7(5), pages 558-567, May.
    16. Lorenzo Barbieri & Roberto D’Autilia & Paola Marrone & Ilaria Montella, 2023. "Graph Representation of the 15-Minute City: A Comparison between Rome, London, and Paris," Sustainability, MDPI, vol. 15(4), pages 1-14, February.
    17. Miotti, Marco & Needell, Zachary A. & Jain, Rishee K., 2023. "The impact of urban form on daily mobility demand and energy use: Evidence from the United States," Applied Energy, Elsevier, vol. 339(C).
    18. Bellotti, Anthony & Brigo, Damiano & Gambetti, Paolo & Vrins, Frédéric, 2021. "Forecasting recovery rates on non-performing loans with machine learning," International Journal of Forecasting, Elsevier, vol. 37(1), pages 428-444.
    19. Tranos, Emmanouil & Incera, Andre Carrascal & Willis, George, 2022. "Using the web to predict regional trade flows: data extraction, modelling, and validation," OSF Preprints 9bu5z, Center for Open Science.
    20. Štefan Lyócsa & Petra Vašaničová & Branka Hadji Misheva & Marko Dávid Vateha, 2022. "Default or profit scoring credit systems? Evidence from European and US peer-to-peer lending markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:52:y:2025:i:3:d:10.1007_s11116-023-10452-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.