IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37900-3.html
   My bibliography  Save this article

Global patterns and edaphic-climatic controls of soil carbon decomposition kinetics predicted from incubation experiments

Author

Listed:
  • Daifeng Xiang

    (Wuhan University
    Wuhan University)

  • Gangsheng Wang

    (Wuhan University
    Wuhan University)

  • Jing Tian

    (Wuhan University
    Wuhan University)

  • Wanyu Li

    (Wuhan University
    Wuhan University)

Abstract

Knowledge about global patterns of the decomposition kinetics of distinct soil organic matter (SOM) pools is crucial to robust estimates of land-atmosphere carbon fluxes under climate change. However, the current Earth system models often adopt globally-consistent reference SOM decomposition rates (kref), ignoring effects from edaphic-climate heterogeneity. Here, we compile a comprehensive set of edaphic-climatic and SOM decomposition data from published incubation experiments and employ machine-learning techniques to develop models capable of predicting the expected sizes and kref of multiple SOM pools (fast, slow, and passive). We show that soil texture dominates the turnover of the fast pools, whereas pH predominantly regulates passive SOM decomposition. This suggests that pH-sensitive bacterial decomposers might have larger effects on stable SOM decomposition than previously believed. Using these predictive models, we provide a 1-km resolution global-scale dataset of the sizes and kref of these SOM pools, which may improve global biogeochemical model parameterization and predictions.

Suggested Citation

  • Daifeng Xiang & Gangsheng Wang & Jing Tian & Wanyu Li, 2023. "Global patterns and edaphic-climatic controls of soil carbon decomposition kinetics predicted from incubation experiments," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37900-3
    DOI: 10.1038/s41467-023-37900-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37900-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37900-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kuhn, Max, 2008. "Building Predictive Models in R Using the caret Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i05).
    2. Mark A. Bradford & William R. Wieder & Gordon B. Bonan & Noah Fierer & Peter A. Raymond & Thomas W. Crowther, 2016. "Managing uncertainty in soil carbon feedbacks to climate change," Nature Climate Change, Nature, vol. 6(8), pages 751-758, August.
    3. David Haaf & Johan Six & Sebastian Doetterl, 2021. "Global patterns of geo-ecological controls on the response of soil respiration to warming," Nature Climate Change, Nature, vol. 11(7), pages 623-627, July.
    4. Zhongkui Luo & Guocheng Wang & Enli Wang, 2019. "Global subsoil organic carbon turnover times dominantly controlled by soil properties rather than climate," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    5. Junyi Liang & Zhenghu Zhou & Changfu Huo & Zheng Shi & James R. Cole & Lei Huang & Konstantinos T. Konstantinidis & Xiaoming Li & Bo Liu & Zhongkui Luo & C. Ryan Penton & Edward A. G. Schuur & James M, 2018. "More replenishment than priming loss of soil organic carbon with additional carbon input," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    6. Tjur, Tue, 2009. "Coefficients of Determination in Logistic Regression Models—A New Proposal: The Coefficient of Discrimination," The American Statistician, American Statistical Association, vol. 63(4), pages 366-372.
    7. Chayoung Kim & Taejung Park, 2022. "Predicting Determinants of Lifelong Learning Intention Using Gradient Boosting Machine (GBM) with Grid Search," Sustainability, MDPI, vol. 14(9), pages 1-13, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuai Ren & Tao Wang & Bertrand Guenet & Dan Liu & Yingfang Cao & Jinzhi Ding & Pete Smith & Shilong Piao, 2024. "Projected soil carbon loss with warming in constrained Earth system models," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Fangkai Zhao & Lei Yang & Haw Yen & Qingyu Feng & Min Li & Liding Chen, 2023. "Reducing risks of antibiotics to crop production requires land system intensification within thresholds," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Prabal Das & D. A. Sachindra & Kironmala Chanda, 2022. "Machine Learning-Based Rainfall Forecasting with Multiple Non-Linear Feature Selection Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6043-6071, December.
    4. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Ingo Geishecker & Philipp J. H. Schröder & Allan S⊘rensen, 2019. "One‐off export events," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 52(1), pages 93-131, February.
    6. Piaopiao Chen & Agnès H. Michel & Jianzhi Zhang, 2022. "Transposon insertional mutagenesis of diverse yeast strains suggests coordinated gene essentiality polymorphisms," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Paulo Infante & Gonçalo Jacinto & Anabela Afonso & Leonor Rego & Pedro Nogueira & Marcelo Silva & Vitor Nogueira & José Saias & Paulo Quaresma & Daniel Santos & Patrícia Góis & Paulo Rebelo Manuel, 2023. "Factors That Influence the Type of Road Traffic Accidents: A Case Study in a District of Portugal," Sustainability, MDPI, vol. 15(3), pages 1-16, January.
    8. Ephrem Habyarimana & Faheem S Baloch, 2021. "Machine learning models based on remote and proximal sensing as potential methods for in-season biomass yields prediction in commercial sorghum fields," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-23, March.
    9. Banks, Jonathan & Rabbani, Arif & Nadkarni, Kabir & Renaud, Evan, 2020. "Estimating parasitic loads related to brine production from a hot sedimentary aquifer geothermal project: A case study from the Clarke Lake gas field, British Columbia," Renewable Energy, Elsevier, vol. 153(C), pages 539-552.
    10. Alexander Wettstein & Gabriel Jenni & Ida Schneider & Fabienne Kühne & Martin grosse Holtforth & Roberto La Marca, 2023. "Predictors of Psychological Strain and Allostatic Load in Teachers: Examining the Long-Term Effects of Biopsychosocial Risk and Protective Factors Using a LASSO Regression Approach," IJERPH, MDPI, vol. 20(10), pages 1-20, May.
    11. Tang, Kayu & Parsons, David J. & Jude, Simon, 2019. "Comparison of automatic and guided learning for Bayesian networks to analyse pipe failures in the water distribution system," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 24-36.
    12. Iain P. Hartley & Tim C. Hill & Sarah E. Chadburn & Gustaf Hugelius, 2021. "Temperature effects on carbon storage are controlled by soil stabilisation capacities," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    13. Bellotti, Anthony & Brigo, Damiano & Gambetti, Paolo & Vrins, Frédéric, 2021. "Forecasting recovery rates on non-performing loans with machine learning," International Journal of Forecasting, Elsevier, vol. 37(1), pages 428-444.
    14. Tranos, Emmanouil & Incera, Andre Carrascal & Willis, George, 2022. "Using the web to predict regional trade flows: data extraction, modelling, and validation," OSF Preprints 9bu5z, Center for Open Science.
    15. Štefan Lyócsa & Petra Vašaničová & Branka Hadji Misheva & Marko Dávid Vateha, 2022. "Default or profit scoring credit systems? Evidence from European and US peer-to-peer lending markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    16. Laurion, Henry, 2020. "Implications of Non-GAAP earnings for real activities and accounting choices," Journal of Accounting and Economics, Elsevier, vol. 70(1).
    17. Laura H. Antão & Benjamin Weigel & Giovanni Strona & Maria Hällfors & Elina Kaarlejärvi & Tad Dallas & Øystein H. Opedal & Janne Heliölä & Heikki Henttonen & Otso Huitu & Erkki Korpimäki & Mikko Kuuss, 2022. "Climate change reshuffles northern species within their niches," Nature Climate Change, Nature, vol. 12(6), pages 587-592, June.
    18. Arjan S. Gosal & Janine A. McMahon & Katharine M. Bowgen & Catherine H. Hoppe & Guy Ziv, 2021. "Identifying and Mapping Groups of Protected Area Visitors by Environmental Awareness," Land, MDPI, vol. 10(6), pages 1-14, May.
    19. Marcos Rodrigues & Fermín Alcasena & Pere Gelabert & Cristina Vega‐García, 2020. "Geospatial Modeling of Containment Probability for Escaped Wildfires in a Mediterranean Region," Risk Analysis, John Wiley & Sons, vol. 40(9), pages 1762-1779, September.
    20. Franziska Disslbacher & Julia Hofmann, 2021. "Einstellungen zum Wohlfahrtsstaat und dessen Finanzierung in Österreich," Wirtschaft und Gesellschaft - WuG, Kammer für Arbeiter und Angestellte für Wien, Abteilung Wirtschaftswissenschaft und Statistik, vol. 47(3), pages 329-360.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37900-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.