IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v52y2025i1d10.1007_s11116-023-10419-8.html
   My bibliography  Save this article

Data-driven analysis and modeling of individual longitudinal behavior response to fare incentives in public transport

Author

Listed:
  • Leizhen Wang

    (Monash University)

  • Xin Chen

    (The University of Queensland)

  • Zhenliang Ma

    (KTH Royal Institute of Technology)

  • Pengfei Zhang

    (Henan Academy of Sciences)

  • Baichuan Mo

    (MIT)

  • Peibo Duan

    (Monash University)

Abstract

Incentive-based public transport demand management (PTDM) can effectively mitigate overcrowding issues in crowded urban rail systems. Analyzing passengers’ behavioral responses to the incentive can guide the design, implementation, and update of PTDM strategies. Though several studies reported passengers’ responses to fare incentives, they focused on passengers’ short-term behavioral responses. Limited studies explore passengers’ longitudinal behavioral responses for different types of adopters, which is important for policy assessment and adjustment. This paper explores and models passengers’ longitudinal behavior response to a pre-peak fare discount incentive using 18 months of smartcard data in public transport in Hong Kong. We classified adopters into six types based on their temporal travel pattern changes before and after the promotion. The longitudinal analysis reveals that among all adopters, 19% of users change their departure times to take advantage of fare discounts but do not contribute to the goal of reducing peak-hour travel. However, these adopters are more likely to sustain their changed behavior in a long term which is not desired by the incentive program. The spatial analysis shows that the origin station distribution of late adopters is relatively more diverse than the early adopters with more trips starting from distant areas. The diffusion modeling shows that the majority adopters are innovators and the word-of-mouth diffusion effect (imitators) is marginal. The discrete choice model results highlight the heterogeneous impact of factors on different types of adopters and their values of time changes. The significant factors common to adopters are: departure time flexibility, the expected money savings, the required departure time changes, and work locations. The findings are useful for public transport planners and policymakers for informed incentive design and management.

Suggested Citation

  • Leizhen Wang & Xin Chen & Zhenliang Ma & Pengfei Zhang & Baichuan Mo & Peibo Duan, 2025. "Data-driven analysis and modeling of individual longitudinal behavior response to fare incentives in public transport," Transportation, Springer, vol. 52(1), pages 263-286, February.
  • Handle: RePEc:kap:transp:v:52:y:2025:i:1:d:10.1007_s11116-023-10419-8
    DOI: 10.1007/s11116-023-10419-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-023-10419-8
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-023-10419-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Zheng & Fujii, Hidemichi & Managi, Shunsuke, 2014. "How does Commuting Behavior Change Due to Incentives? An Empirical Study of the Beijing Subway System," MPRA Paper 54691, University Library of Munich, Germany.
    2. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    3. Nan Yang & Yong Long Lim, 2018. "Temporary Incentives Change Daily Routines: Evidence from a Field Experiment on Singapore’s Subways," Management Science, INFORMS, vol. 64(7), pages 3365-3379, July.
    4. Sunding, David & Zilberman, David, 2001. "The agricultural innovation process: Research and technology adoption in a changing agricultural sector," Handbook of Agricultural Economics, in: B. L. Gardner & G. C. Rausser (ed.), Handbook of Agricultural Economics, edition 1, volume 1, chapter 4, pages 207-261, Elsevier.
    5. Anne Halvorsen & Haris N. Koutsopoulos & Zhenliang Ma & Jinhua Zhao, 2020. "Demand management of congested public transport systems: a conceptual framework and application using smart card data," Transportation, Springer, vol. 47(5), pages 2337-2365, October.
    6. Tillema, Taede & Ben-Elia, Eran & Ettema, Dick & van Delden, Janet, 2013. "Charging versus rewarding: A comparison of road-pricing and rewarding peak avoidance in the Netherlands," Transport Policy, Elsevier, vol. 26(C), pages 4-14.
    7. Anupriya, & Graham, Daniel J. & Hörcher, Daniel & Anderson, Richard J. & Bansal, Prateek, 2020. "Quantifying the ex-post causal impact of differential pricing on commuter trip scheduling in Hong Kong," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 16-34.
    8. Dargay, Joyce & Gately, Dermot, 1999. "Income's effect on car and vehicle ownership, worldwide: 1960-2015," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(2), pages 101-138, February.
    9. Desiraju, Ramarao & Nair, Harikesh S. & Chintagunta, Pradeep, 2004. "Diffusion of New Pharmaceutical Drugs in Developing and Developed Nations," Research Papers 1950, Stanford University, Graduate School of Business.
    10. Ma, Zhenliang & Koutsopoulos, Haris N. & Liu, Tianyou & Basu, Abhishek Arunasis, 2020. "Behavioral response to promotion-based public transport demand management: Longitudinal analysis and implications for optimal promotion design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 356-372.
    11. Delre, S.A. & Jager, W. & Bijmolt, T.H.A. & Janssen, M.A., 2007. "Targeting and timing promotional activities: An agent-based model for the takeoff of new products," Journal of Business Research, Elsevier, vol. 60(8), pages 826-835, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yu & Wang, Yacan & Ettema, Dick & Mao, Zidan & Charlton, Samuel G. & Zhou, Huiyu, 2020. "Commuter value perceptions in peak avoidance behavior: An empirical study in the Beijing subway system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 70-84.
    2. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    3. Liang, Zhiyuan & Tang, Yili & Yu, Jianing & Wang, Yacan, 2024. "A collective incentive strategy to manage ridership rebound and consumer surplus in mass transit systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 182(C).
    4. Ma, Zhenliang & Koutsopoulos, Haris N. & Liu, Tianyou & Basu, Abhishek Arunasis, 2020. "Behavioral response to promotion-based public transport demand management: Longitudinal analysis and implications for optimal promotion design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 356-372.
    5. Vakratsas, Demetrios & Kolsarici, Ceren, 2008. "A dual-market diffusion model for a new prescription pharmaceutical," International Journal of Research in Marketing, Elsevier, vol. 25(4), pages 282-293.
    6. Ruiz-Conde, Enar & Wieringa, Jaap E. & Leeflang, Peter S.H., 2014. "Competitive diffusion of new prescription drugs: The role of pharmaceutical marketing investment," Technological Forecasting and Social Change, Elsevier, vol. 88(C), pages 49-63.
    7. Djiby Racine Thiam & Ariel Dinar & Hebert Ntuli, 2021. "Promotion of residential water conservation measures in South Africa: the role of water-saving equipment," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(1), pages 173-210, January.
    8. Peters, Kay & Albers, Sönke & Kumar, V., 2008. "Is there more to international Diffusion than Culture? An investigation on the Role of Marketing and Industry Variables," EconStor Preprints 27678, ZBW - Leibniz Information Centre for Economics.
    9. Wang, Qing & Zhao, Wenjing & Ma, Shoufeng & Schonfeld, Paul M. & Zheng, Yue & Xue, Dabin, 2023. "Effects of a price incentive policy on urban rail transit passengers: A case study in Nanjing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    10. Ding, Fei & Liu, Yun, 2009. "A decision theoretical approach for diffusion promotion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3572-3580.
    11. Laciana, Carlos E. & Rovere, Santiago L. & Podestá, Guillermo P., 2013. "Exploring associations between micro-level models of innovation diffusion and emerging macro-level adoption patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(8), pages 1873-1884.
    12. Giovanni Pegoretti & Francesco Rentocchini & Giuseppe Vittucci Marzetti, 2012. "An agent-based model of innovation diffusion: network structure and coexistence under different information regimes," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 7(2), pages 145-165, October.
    13. Ashkan Negahban & Jeffrey S. Smith, 2018. "A joint analysis of production and seeding strategies for new products: an agent-based simulation approach," Annals of Operations Research, Springer, vol. 268(1), pages 41-62, September.
    14. Flachsbarth, Insa & Grassnick, Nina & Masood, Amjad & Bruemmer, Bernhard, 2018. "The Uneven Spread of Private Food Quality Standards over Time and Space," 2018 Annual Meeting, August 5-7, Washington, D.C. 274197, Agricultural and Applied Economics Association.
    15. Desmarchelier, Benoît & Fang, Eddy S., 2016. "National culture and innovation diffusion. Exploratory insights from agent-based modeling," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 121-128.
    16. Guerzoni, Marco & Jordan, Alexander, 2016. "“Cursed is the ground because of you”: Religion, Ethnicity, and the Adoption of Fertilizers in Rural Ethiopia," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201605, University of Turin.
    17. Andrijana Horvat & Vincenzo Fogliano & Pieternel A Luning, 2020. "Modifying the Bass diffusion model to study adoption of radical new foods–The case of edible insects in the Netherlands," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-23, June.
    18. Srinivasan Radhakrishnan & Arjun Duvvuru & Sagar Kamarthi, 2015. "Health Care in US: A Combined Simulation Methodology to Assess the Effectiveness of Home-Monitoring Programmes," Vikalpa: The Journal for Decision Makers, , vol. 40(3), pages 269-276, September.
    19. Alexander Jordan & Marco Guerzoni, 2021. "“Cursed is the ground because of you”:," Journal of Evolutionary Economics, Springer, vol. 31(3), pages 853-890, July.
    20. Wang, Bing & Li, Shuai & Wang, Qi & Lin, Zhenhong, 2020. "Understanding travelers’ mobility decisions in response to customer incentives," Transport Policy, Elsevier, vol. 97(C), pages 113-120.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:52:y:2025:i:1:d:10.1007_s11116-023-10419-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.