IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v48y2021i1d10.1007_s11116-019-10048-0.html
   My bibliography  Save this article

An improvement in MATSim computing time for large-scale travel behaviour microsimulation

Author

Listed:
  • Chengxiang Zhuge

    (University of Cambridge
    University of East Anglia
    The Hong Kong Polytechnic University)

  • Mike Bithell

    (University of Cambridge)

  • Chunfu Shao

    (Beijing Jiaotong University)

  • Xia Li

    (Beijing Institute of Technology)

  • Jian Gao

    (Beijing Jiaotong University)

Abstract

Coupling activity-based models with dynamic traffic assignment appears to form a promising approach to investigating travel demand. However, such an integrated framework is generally time-consuming, especially for large-scale scenarios. This paper attempts to improve the performance of these kinds of integrated frameworks through some simple adjustments using MATSim as an example. We focus on two specific areas of the model—replanning and time stepping. In the first case we adjust the scoring system for agents to use in assessing their travel plans to include only agents with low plan scores, rather than selecting agents at random, as is the case in the current model. Secondly, we vary the model time step to account for network loading in the execution module of MATSim. The city of Baoding, China is used as a case study. The performance of the proposed methods was assessed through comparison between the improved and original MATSim, calibrated using Cadyts. The results suggest that the first solution can significantly decrease the computing time at the cost of slight increase of model error, but the second solution makes the improved MATSim outperform the original one, both in terms of computing time and model accuracy; Integrating all new proposed methods takes still less computing time and obtains relatively accurate outcomes, compared with those only incorporating one new method.

Suggested Citation

  • Chengxiang Zhuge & Mike Bithell & Chunfu Shao & Xia Li & Jian Gao, 2021. "An improvement in MATSim computing time for large-scale travel behaviour microsimulation," Transportation, Springer, vol. 48(1), pages 193-214, February.
  • Handle: RePEc:kap:transp:v:48:y:2021:i:1:d:10.1007_s11116-019-10048-0
    DOI: 10.1007/s11116-019-10048-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-019-10048-0
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-019-10048-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Soora Rasouli & Harry Timmermans, 2014. "Activity-based models of travel demand: promises, progress and prospects," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 18(1), pages 31-60, March.
    2. Gunnar Flötteröd & Yu Chen & Kai Nagel, 2012. "Behavioral Calibration and Analysis of a Large-Scale Travel Microsimulation," Networks and Spatial Economics, Springer, vol. 12(4), pages 481-502, December.
    3. Chengxiang Zhuge & Chunfu Shao & Jian Gao & Meng Meng & Weiyang Xu, 2014. "An Initial Implementation of Multiagent Simulation of Travel Behavior for a Medium-Sized City in China," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-11, March.
    4. Gunnar Flötteröd & Michel Bierlaire & Kai Nagel, 2011. "Bayesian Demand Calibration for Dynamic Traffic Simulations," Transportation Science, INFORMS, vol. 45(4), pages 541-561, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cantelmo, Guido & Qurashi, Moeid & Prakash, A. Arun & Antoniou, Constantinos & Viti, Francesco, 2020. "Incorporating trip chaining within online demand estimation," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 171-187.
    2. Kevin Credit & Zander Arnao, 2023. "A method to derive small area estimates of linked commuting trips by mode from open source LODES and ACS data," Environment and Planning B, , vol. 50(3), pages 709-722, March.
    3. Flötteröd, Gunnar, 2017. "A search acceleration method for optimization problems with transport simulation constraints," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 239-260.
    4. Mohammad Hesam Hafezi & Lei Liu & Hugh Millward, 2019. "A time-use activity-pattern recognition model for activity-based travel demand modeling," Transportation, Springer, vol. 46(4), pages 1369-1394, August.
    5. Wang, Yihong & Correia, Gonçalo Homem de Almeida & de Romph, Erik & Timmermans, H.J.P., 2017. "Using metro smart card data to model location choice of after-work activities: An application to Shanghai," Journal of Transport Geography, Elsevier, vol. 63(C), pages 40-47.
    6. Osorio, Carolina, 2019. "High-dimensional offline origin-destination (OD) demand calibration for stochastic traffic simulators of large-scale road networks," Transportation Research Part B: Methodological, Elsevier, vol. 124(C), pages 18-43.
    7. Blom Västberg, Oskar & Karlström, Anders & Jonsson, Daniel & Sundberg, Marcus, 2016. "Including time in a travel demand model using dynamic discrete choice," MPRA Paper 75336, University Library of Munich, Germany, revised 11 Nov 2016.
    8. Katrien Ramaekers & Sofie Reumers & Geert Wets & Mario Cools, 2013. "Modelling Route Choice Decisions of Car Travellers Using Combined GPS and Diary Data," Networks and Spatial Economics, Springer, vol. 13(3), pages 351-372, September.
    9. Paul Baustert & Tomás Navarrete Gutiérrez & Thomas Gibon & Laurent Chion & Tai-Yu Ma & Gabriel Leite Mariante & Sylvain Klein & Philippe Gerber & Enrico Benetto, 2019. "Coupling Activity-Based Modeling and Life Cycle Assessment—A Proof-of-Concept Study on Cross-Border Commuting in Luxembourg," Sustainability, MDPI, vol. 11(15), pages 1-24, July.
    10. Yifei Xie & Mazen Danaf & Carlos Lima Azevedo & Arun Prakash Akkinepally & Bilge Atasoy & Kyungsoo Jeong & Ravi Seshadri & Moshe Ben-Akiva, 2019. "Behavioral modeling of on-demand mobility services: general framework and application to sustainable travel incentives," Transportation, Springer, vol. 46(6), pages 2017-2039, December.
    11. Kai Shen & Jan-Dirk Schmöcker & Wenzhe Sun & Ali Gul Qureshi, 2023. "Calibration of sightseeing tour choices considering multiple decision criteria with diminishing reward," Transportation, Springer, vol. 50(5), pages 1897-1921, October.
    12. Jahun Koo & Jiyoon Kim & Sungtaek Choi & Sangho Choo, 2022. "Identifying the Causal Relationship between Travel and Activity Times: A Structural Equation Modeling Approach," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    13. Kim, Jinhee & Rasouli, Soora & Timmermans, Harry, 2014. "Expanding scope of hybrid choice models allowing for mixture of social influences and latent attitudes: Application to intended purchase of electric cars," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 71-85.
    14. Fu, Xiao & Wu, Youqi & Huang, Di & Wu, Jianjun, 2022. "An activity-based model for transit network design and activity location planning in a three-party game framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    15. Irena Ištoka Otković & Barbara Karleuša & Aleksandra Deluka-Tibljaš & Sanja Šurdonja & Mario Marušić, 2021. "Combining Traffic Microsimulation Modeling and Multi-Criteria Analysis for Sustainable Spatial-Traffic Planning," Land, MDPI, vol. 10(7), pages 1-26, June.
    16. Meead Saberi & Taha H. Rashidi & Milad Ghasri & Kenneth Ewe, 2018. "A Complex Network Methodology for Travel Demand Model Evaluation and Validation," Networks and Spatial Economics, Springer, vol. 18(4), pages 1051-1073, December.
    17. Jiri Horak & Jan Tesla & David Fojtik & Vit Vozenilek, 2019. "Modelling Public Transport Accessibility with Monte Carlo Stochastic Simulations: A Case Study of Ostrava," Sustainability, MDPI, vol. 11(24), pages 1-25, December.
    18. Johannes Müller & Markus Straub & Gerald Richter & Christian Rudloff, 2021. "Integration of Different Mobility Behaviors and Intermodal Trips in MATSim," Sustainability, MDPI, vol. 14(1), pages 1-18, December.
    19. Cantelmo, Guido & Viti, Francesco & Cipriani, Ernesto & Nigro, Marialisa, 2018. "A utility-based dynamic demand estimation model that explicitly accounts for activity scheduling and duration," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PB), pages 303-320.
    20. Dali Wei & Changwei Yuan & Hongchao Liu & Dayong Wu & Wesley Kumfer, 2017. "The Impact of Service Refusal to the Supply–Demand Equilibrium in the Taxicab Market," Networks and Spatial Economics, Springer, vol. 17(1), pages 225-253, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:48:y:2021:i:1:d:10.1007_s11116-019-10048-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.