IDEAS home Printed from
   My bibliography  Save this article

E-Capacities and the Ellsberg Paradox


  • Jürgen Eichberger


  • David Kelsey


This paper introduces E-capacities as a representation of beliefs which incorporates objective information about the probability of events. It can be shown that the Choquet integral of an E-capacity is the Ellsberg representation. The paper further explores properties of this representation of beliefs and provides an axiomatisation for them.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Jürgen Eichberger & David Kelsey, 1999. "E-Capacities and the Ellsberg Paradox," Theory and Decision, Springer, vol. 46(2), pages 107-138, April.
  • Handle: RePEc:kap:theord:v:46:y:1999:i:2:p:107-138 DOI: 10.1023/A:1004994630014

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    1. Lo, Kin Chung, 1996. "Equilibrium in Beliefs under Uncertainty," Journal of Economic Theory, Elsevier, vol. 71(2), pages 443-484, November.
    2. Sujoy Mukerji, 1996. "Understanding the nonadditive probability decision model (*)," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 9(1), pages 23-46.
    3. Eichberger, Jurgen & Kelsey, David, 1996. "Uncertainty Aversion and Preference for Randomisation," Journal of Economic Theory, Elsevier, vol. 71(1), pages 31-43, October.
    4. Paolo Ghirardato, 2001. "Coping with ignorance: unforeseen contingencies and non-additive uncertainty," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 17(2), pages 247-276.
    5. Gilboa Itzhak & Schmeidler David, 1993. "Updating Ambiguous Beliefs," Journal of Economic Theory, Elsevier, vol. 59(1), pages 33-49, February.
    6. Dow James & Werlang Sergio Ribeiro Da Costa, 1994. "Nash Equilibrium under Knightian Uncertainty: Breaking Down Backward Induction," Journal of Economic Theory, Elsevier, vol. 64(2), pages 305-324, December.
    7. Mukerji, Sujoy, 1998. "Ambiguity Aversion and Incompleteness of Contractual Form," American Economic Review, American Economic Association, vol. 88(5), pages 1207-1231, December.
    8. Eichberger, Jurgen & Kelsey, David, 1996. "Uncertainty Aversion and Dynamic Consistency," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 37(3), pages 625-640, August.
    9. Dow, James & Werlang, Sergio Ribeiro da Costa, 1992. "Uncertainty Aversion, Risk Aversion, and the Optimal Choice of Portfolio," Econometrica, Econometric Society, vol. 60(1), pages 197-204, January.
    10. Epstein Larry G. & Le Breton Michel, 1993. "Dynamically Consistent Beliefs Must Be Bayesian," Journal of Economic Theory, Elsevier, vol. 61(1), pages 1-22, October.
    11. Schmeidler, David, 1989. "Subjective Probability and Expected Utility without Additivity," Econometrica, Econometric Society, vol. 57(3), pages 571-587, May.
    12. Eichberger, J. & Kelsey, D., 1994. "Non-additive beliefs and game theory," Discussion Paper 1994-10, Tilburg University, Center for Economic Research.
    13. Eichberger, J. & Kelsey, D., 1996. "Free Riders Do not Like Uncertainty," Discussion Papers 96-14, Department of Economics, University of Birmingham.
    14. Machina, Mark J & Schmeidler, David, 1992. "A More Robust Definition of Subjective Probability," Econometrica, Econometric Society, vol. 60(4), pages 745-780, July.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Ellsberg paradox; Uncertainty aversion; Choquet integral; Non-additive probabilities;

    JEL classification:

    • C70 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - General
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • D80 - Microeconomics - - Information, Knowledge, and Uncertainty - - - General
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:theord:v:46:y:1999:i:2:p:107-138. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.