IDEAS home Printed from https://ideas.repec.org/a/kap/netspa/v16y2016i4d10.1007_s11067-015-9313-7.html
   My bibliography  Save this article

Incorporating Ridesharing in the Static Traffic Assignment Model

Author

Listed:
  • Oren Bahat

    (Technion – Israel Institute of Technology)

  • Shlomo Bekhor

    (Technion – Israel Institute of Technology)

Abstract

This paper develops a combined mode choice and traffic assignment model that incorporates ridesharing as an option in a mode choice model, attempting to quantify the ridesharing market share in an equilibrium context. The mode choice model takes into account that the waiting time for a ride is dependent on the available drivers. The traffic assignment model is a static user equilibrium that interacts with the discrete choice model through level of service variables. An iterative algorithm was implemented and applied in a simple network and a more realistic network. The results indicate that the quantity of ride sharing drivers is a key parameter to the service success, and below a critical mass of drivers, it is unlikely that passengers will find the service valuable. It is also shown that ride sharing has the ability to reduce in-vehicle times for all the users, although passenger may suffer from longer door-to-door times, having to wait for their ride.

Suggested Citation

  • Oren Bahat & Shlomo Bekhor, 2016. "Incorporating Ridesharing in the Static Traffic Assignment Model," Networks and Spatial Economics, Springer, vol. 16(4), pages 1125-1149, December.
  • Handle: RePEc:kap:netspa:v:16:y:2016:i:4:d:10.1007_s11067-015-9313-7
    DOI: 10.1007/s11067-015-9313-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11067-015-9313-7
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11067-015-9313-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nguyen, S. & Pallottino, S., 1988. "Equilibrium traffic assignment for large scale transit networks," European Journal of Operational Research, Elsevier, vol. 37(2), pages 176-186, November.
    2. Khandker Nurul Habib & Yuan Tian & Hamid Zaman, 2011. "Modelling commuting mode choice with explicit consideration of carpool in the choice set formation," Transportation, Springer, vol. 38(4), pages 587-604, July.
    3. Dawei Li & Tomio Miwa & Takayuki Morikawa, 2014. "Considering En-Route Choices in Utility-Based Route Choice Modelling," Networks and Spatial Economics, Springer, vol. 14(3), pages 581-604, December.
    4. Jia Hao Wu & Michael Florian & Patrice Marcotte, 1994. "Transit Equilibrium Assignment: A Model and Solution Algorithms," Transportation Science, INFORMS, vol. 28(3), pages 193-203, August.
    5. Michael Florian, 1977. "A Traffic Equilibrium Model of Travel by Car and Public Transit Modes," Transportation Science, INFORMS, vol. 11(2), pages 166-179, May.
    6. Cepeda, M. & Cominetti, R. & Florian, M., 2006. "A frequency-based assignment model for congested transit networks with strict capacity constraints: characterization and computation of equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 40(6), pages 437-459, July.
    7. Tsao, H.-S. Jacob & Lin, Da-Jie, 1999. "Spatial and Temporal Factors in Estimating the Potential of Ride-sharing for Demand Reduction," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt2p57q0c9, Institute of Transportation Studies, UC Berkeley.
    8. Yang, Hai & Bell, Michael G. H., 1997. "Traffic restraint, road pricing and network equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 31(4), pages 303-314, August.
    9. Hai Yang & Yan Lau & Sze Wong & Hong Lo, 2000. "A macroscopic taxi model for passenger demand, taxi utilization and level of services," Transportation, Springer, vol. 27(3), pages 317-340, June.
    10. Agatz, Niels A.H. & Erera, Alan L. & Savelsbergh, Martin W.P. & Wang, Xing, 2011. "Dynamic ride-sharing: A simulation study in metro Atlanta," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1450-1464.
    11. Agatz, N.A.H. & Erera, A. & Savelsbergh, M.W.P. & Wang, X., 2010. "Sustainable Passenger Transportation: Dynamic Ride-Sharing," ERIM Report Series Research in Management ERS-2010-010-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    12. Stella Dafermos, 1980. "Traffic Equilibrium and Variational Inequalities," Transportation Science, INFORMS, vol. 14(1), pages 42-54, February.
    13. Hai-Jun Huang & Hai Yang & Michael G.H. Bell, 2000. "The models and economics of carpools," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 34(1), pages 55-68.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng Li & Guowei Hua & Haijun Huang, 2018. "A Multi-Modal Route Choice Model with Ridesharing and Public Transit," Sustainability, MDPI, vol. 10(11), pages 1-14, November.
    2. Xingyuan Li & Jing Bai, 2021. "A Ridesharing Choice Behavioral Equilibrium Model with Users of Heterogeneous Values of Time," IJERPH, MDPI, vol. 18(3), pages 1-22, January.
    3. Guo, Yuhan & Zhang, Yu & Boulaksil, Youssef & Qian, Yaguan & Allaoui, Hamid, 2023. "Modelling and analysis of online ride-sharing platforms – A sustainability perspective," European Journal of Operational Research, Elsevier, vol. 304(2), pages 577-595.
    4. Eva Malichová & Ghadir Pourhashem & Tatiana Kováčiková & Martin Hudák, 2020. "Users’ Perception of Value of Travel Time and Value of Ridesharing Impacts on Europeans’ Ridesharing Participation Intention: A Case Study Based on MoTiV European-Wide Mobility and Behavioral Pattern ," Sustainability, MDPI, vol. 12(10), pages 1-19, May.
    5. Bilong Shen & Weimin Zheng & Kathleen M. Carley, 2018. "Urban Activity Mining Framework for Ride Sharing Systems Based on Vehicular Social Networks," Networks and Spatial Economics, Springer, vol. 18(3), pages 705-734, September.
    6. André de Palma & Lucas Javaudin & Patrick Stokkink & Léandre Tarpin-Pitre, 2022. "Ride-sharing with inflexible drivers in the Paris metropolitan area," Post-Print hal-03880692, HAL.
    7. Rui Yao & Shlomo Bekhor, 2023. "A general equilibrium model for multi-passenger ridesharing systems with stable matching," Papers 2303.16595, arXiv.org, revised Dec 2023.
    8. André de Palma & Patrick Stokkink & Nikolas Geroliminis, 2020. "Influence of Dynamic Congestion on Carpooling Matching," THEMA Working Papers 2020-12, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    9. Kitthamkesorn, Songyot & Chen, Anthony, 2017. "Alternate weibit-based model for assessing green transport systems with combined mode and route travel choices," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 291-310.
    10. Sun, S. & Szeto, W.Y., 2021. "Multi-class stochastic user equilibrium assignment model with ridesharing: Formulation and policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 203-227.
    11. Biao Yin & Liu Liu & Nicolas Coulombel & Vincent Viguie, 2018. "Appraising the environmental benefits of ride-sharing: The Paris region case study," Post-Print hal-01695082, HAL.
    12. de Palma, André & Stokkink, Patrick & Geroliminis, Nikolas, 2022. "Influence of dynamic congestion with scheduling preferences on carpooling matching with heterogeneous users," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 479-498.
    13. Rui Yao & Shlomo Bekhor, 2021. "A Dynamic Tree Algorithm for Peer-to-Peer Ridesharing Matching," Networks and Spatial Economics, Springer, vol. 21(4), pages 801-837, December.
    14. André de Palma & Lucas Javaudin & Patrick Stokkink & Léandre Tarpin-Pitre, 2021. "Modelling Ridesharing in a Large Network with Dynamic Congestion," THEMA Working Papers 2021-16, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    15. Chen-Yang Yan & Mao-Bin Hu & Rui Jiang & Jiancheng Long & Jin-Yong Chen & Hao-Xiang Liu, 2019. "Stochastic Ridesharing User Equilibrium in Transport Networks," Networks and Spatial Economics, Springer, vol. 19(4), pages 1007-1030, December.
    16. Yao, Rui & Bekhor, Shlomo, 2023. "A general equilibrium model for multi-passenger ridesharing systems with stable matching," Transportation Research Part B: Methodological, Elsevier, vol. 175(C).
    17. Ruijie Li & Yu (Marco) Nie & Xiaobo Liu, 2020. "Pricing Carpool Rides Based on Schedule Displacement," Transportation Science, INFORMS, vol. 54(4), pages 1134-1152, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Zhandong & Xie, Jun & Liu, Xiaobo & Nie, Yu (Marco), 2020. "Hyperpath-based algorithms for the transit equilibrium assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    2. Wu, Di & Yin, Yafeng & Lawphongpanich, Siriphong, 2011. "Pareto-improving congestion pricing on multimodal transportation networks," European Journal of Operational Research, Elsevier, vol. 210(3), pages 660-669, May.
    3. Ren, Hualing & Song, Yingjie & Long, Jiancheng & Si, Bingfeng, 2021. "A new transit assignment model based on line and node strategies," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 121-142.
    4. Li, Guoyuan & Chen, Anthony, 2023. "Strategy-based transit stochastic user equilibrium model with capacity and number-of-transfers constraints," European Journal of Operational Research, Elsevier, vol. 305(1), pages 164-183.
    5. Kenetsu Uchida & Agachai Sumalee & David Watling & Richard Connors, 2007. "A Study on Network Design Problems for Multi-modal Networks by Probit-based Stochastic User Equilibrium," Networks and Spatial Economics, Springer, vol. 7(3), pages 213-240, September.
    6. Fan, Yinchao & Ding, Jianxun & Liu, Haoxiang & Wang, Yu & Long, Jiancheng, 2022. "Large-scale multimodal transportation network models and algorithms-Part I: The combined mode split and traffic assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    7. Jun Guan Neoh & Maxwell Chipulu & Alasdair Marshall, 2017. "What encourages people to carpool? An evaluation of factors with meta-analysis," Transportation, Springer, vol. 44(2), pages 423-447, March.
    8. Zhang, Haoran & Chen, Jinyu & Li, Wenjing & Song, Xuan & Shibasaki, Ryosuke, 2020. "Mobile phone GPS data in urban ride-sharing: An assessment method for emission reduction potential," Applied Energy, Elsevier, vol. 269(C).
    9. Younes Hamdouch & Siriphong Lawphongpanich, 2010. "Congestion Pricing for Schedule-Based Transit Networks," Transportation Science, INFORMS, vol. 44(3), pages 350-366, August.
    10. Hamdouch, Younes & Lawphongpanich, Siriphong, 2008. "Schedule-based transit assignment model with travel strategies and capacity constraints," Transportation Research Part B: Methodological, Elsevier, vol. 42(7-8), pages 663-684, August.
    11. Nair, Rahul & Miller-Hooks, Elise, 2014. "Equilibrium network design of shared-vehicle systems," European Journal of Operational Research, Elsevier, vol. 235(1), pages 47-61.
    12. Belgacem Bouzaïene-Ayari & Michel Gendreau & Sang Nguyen, 2001. "Modeling Bus Stops in Transit Networks: A Survey and New Formulations," Transportation Science, INFORMS, vol. 35(3), pages 304-321, August.
    13. Sang Nguyen & Stefano Pallottino & Federico Malucelli, 2001. "A Modeling Framework for Passenger Assignment on a Transport Network with Timetables," Transportation Science, INFORMS, vol. 35(3), pages 238-249, August.
    14. Shang, Pan & Li, Ruimin & Guo, Jifu & Xian, Kai & Zhou, Xuesong, 2019. "Integrating Lagrangian and Eulerian observations for passenger flow state estimation in an urban rail transit network: A space-time-state hyper network-based assignment approach," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 135-167.
    15. Massimo Gangi & Giulio E. Cantarella & Antonino Vitetta, 2019. "Solving stochastic frequency-based assignment to transit networks with pre-trip/en-route path choice," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 661-681, December.
    16. Du, Muqing & Chen, Anthony, 2022. "Sensitivity analysis for transit equilibrium assignment and applications to uncertainty analysis," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 175-202.
    17. García, Ricardo & Marín, Angel, 2005. "Network equilibrium with combined modes: models and solution algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 39(3), pages 223-254, March.
    18. Cortés, Cristián E. & Jara-Moroni, Pedro & Moreno, Eduardo & Pineda, Cristobal, 2013. "Stochastic transit equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 51(C), pages 29-44.
    19. Jiang, Y. & Szeto, W.Y., 2016. "Reliability-based stochastic transit assignment: Formulations and capacity paradox," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 181-206.
    20. Padma Seetharaman, 2017. "Modelling risk aversion using a disaggregate stochastic process model in congested transit networks," Public Transport, Springer, vol. 9(3), pages 549-569, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:16:y:2016:i:4:d:10.1007_s11067-015-9313-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.