IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

An Efficient Hybrid Particle Swarm Optimization Algorithm for Solving the Uncapacitated Continuous Location-Allocation Problem

Listed author(s):
  • Abdolsalam Ghaderi


  • Mohammad Jabalameli
  • Farnaz Barzinpour
  • Ragheb Rahmaniani
Registered author(s):

    Location-allocation problems are a class of complicated optimization problems that determine the location of facilities and the allocation of customers to the facilities. In this paper, the uncapacitated continuous location-allocation problem is considered, and a particle swarm optimization approach, which has not previously been applied to this problem, is presented. Two algorithms including classical and hybrid particle swarm optimization algorithms are developed. Local optima of the problem are obtained by two local search heuristics that exist in the literature. These algorithms are combined with particle swarm optimization to construct an efficient hybrid approach. Many large-scale problems are used to measure the effectiveness and efficiency of the proposed algorithms. Our results are compared with the best algorithms in the literature. The experimental results show that the hybrid PSO produces good solutions, is more efficient than the classical PSO, and is competitive with the best results from the literature. Additionally, the proposed hybrid PSO found better solutions for some instances than did the best known solutions in the literature. Copyright Springer Science+Business Media, LLC 2012

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Springer in its journal Networks and Spatial Economics.

    Volume (Year): 12 (2012)
    Issue (Month): 3 (September)
    Pages: 421-439

    in new window

    Handle: RePEc:kap:netspa:v:12:y:2012:i:3:p:421-439
    DOI: 10.1007/s11067-011-9162-y
    Contact details of provider: Web page:

    Order Information: Web:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Rosing, K. E., 1992. "An optimal method for solving the (generalized) multi-Weber problem," European Journal of Operational Research, Elsevier, vol. 58(3), pages 414-426, May.
    2. Mauricio Resende & Renato Werneck, 2007. "A fast swap-based local search procedure for location problems," Annals of Operations Research, Springer, vol. 150(1), pages 205-230, March.
    3. Bischoff, M. & Klamroth, K., 2007. "An efficient solution method for Weber problems with barriers based on genetic algorithms," European Journal of Operational Research, Elsevier, vol. 177(1), pages 22-41, February.
    4. Lozano, S. & Guerrero, F. & Onieva, L. & Larraneta, J., 1998. "Kohonen maps for solving a class of location-allocation problems," European Journal of Operational Research, Elsevier, vol. 108(1), pages 106-117, July.
    5. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2009. "Facility location and supply chain management - A review," European Journal of Operational Research, Elsevier, vol. 196(2), pages 401-412, July.
    6. ReVelle, C.S. & Eiselt, H.A. & Daskin, M.S., 2008. "A bibliography for some fundamental problem categories in discrete location science," European Journal of Operational Research, Elsevier, vol. 184(3), pages 817-848, February.
    7. Yapicioglu, Haluk & Smith, Alice E. & Dozier, Gerry, 2007. "Solving the semi-desirable facility location problem using bi-objective particle swarm," European Journal of Operational Research, Elsevier, vol. 177(2), pages 733-749, March.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:12:y:2012:i:3:p:421-439. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

    or (Rebekah McClure)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.