IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v9y2006i2p125-142.html
   My bibliography  Save this article

A new organ transplantation location–allocation policy: a case study of Italy

Author

Listed:
  • Maria Bruni
  • Domenico Conforti
  • Nicola Sicilia
  • Sandro Trotta

Abstract

In this paper, we propose a location model for the optimal organization of transplant system. Instead of simulation approach, which is typical when facing many health care applications, our approach is distinctively based on a mathematical programming formulation of the relevant problem. In particular, we focus on the critical role of time in transplantation process as well as on a spatial distribution of transplant centers. The allocation of transplantable organs across regions with the objective of attaining regional equity in health care, is the aim of this paper. Our model differs from previous modeling approaches in that it considers the nationwide reorganization of the transplant system, identifying system barriers that may impair equity and efficiency. The demolition of these barriers may leads on a reduction of waiting lists and of wasted organs. We provide the basic structure and the properties of the model, and validate it on a real case study. The experimental validation of the model demonstrates the effectiveness and robustness of our proposal. Copyright Springer Science + Business Media, Inc. 2006

Suggested Citation

  • Maria Bruni & Domenico Conforti & Nicola Sicilia & Sandro Trotta, 2006. "A new organ transplantation location–allocation policy: a case study of Italy," Health Care Management Science, Springer, vol. 9(2), pages 125-142, May.
  • Handle: RePEc:kap:hcarem:v:9:y:2006:i:2:p:125-142
    DOI: 10.1007/s10729-006-7661-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10729-006-7661-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10729-006-7661-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steven M. Shechter & Cindy L. Bryce & Oguzhan Alagoz & Jennifer E. Kreke & James E. Stahl & Andrew J. Schaefer & Derek C. Angus & Mark S. Roberts, 2005. "A Clinically Based Discrete-Event Simulation of End-Stage Liver Disease and the Organ Allocation Process," Medical Decision Making, , vol. 25(2), pages 199-209, March.
    2. Stefanos A. Zenios & Glenn M. Chertow & Lawrence M. Wein, 2000. "Dynamic Allocation of Kidneys to Candidates on the Transplant Waiting List," Operations Research, INFORMS, vol. 48(4), pages 549-569, August.
    3. Xuanming Su & Stefanos A. Zenios, 2005. "Patient Choice in Kidney Allocation: A Sequential Stochastic Assignment Model," Operations Research, INFORMS, vol. 53(3), pages 443-455, June.
    4. John Hornberger & Jae-Hyeon Ahn, 1997. "Deciding Eligibility for Transplantation When a Donor Kidney Becomes Available," Medical Decision Making, , vol. 17(2), pages 160-170, April.
    5. Charles Revelle & David Marks & Jon C. Liebman, 1970. "An Analysis of Private and Public Sector Location Models," Management Science, INFORMS, vol. 16(11), pages 692-707, July.
    6. Marsh, Michael T. & Schilling, David A., 1994. "Equity measurement in facility location analysis: A review and framework," European Journal of Operational Research, Elsevier, vol. 74(1), pages 1-17, April.
    7. Moshe Eben-Chaime & Joseph S. Pliskin, 1992. "Incorporating Patient Travel Times in Decisions about Size and Location of Dialysis Facilities," Medical Decision Making, , vol. 12(1), pages 44-51, February.
    8. Donald A. Brand, 1998. "Perfect Timing, No Remorse, and Kidney Transplantation," Medical Decision Making, , vol. 18(3), pages 249-255, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alumura, Sibel A. & Karab, Bahar Y. & Melo, M. Teresa, 2013. "Location and logistics," Technical Reports on Logistics of the Saarland Business School 5, Saarland University of Applied Sciences (htw saar), Saarland Business School.
    2. Alireza Goli & Ali Ala & Seyedali Mirjalili, 2023. "A robust possibilistic programming framework for designing an organ transplant supply chain under uncertainty," Annals of Operations Research, Springer, vol. 328(1), pages 493-530, September.
    3. Theophilus Dhyankumar Chellappa & Ramasubramaniam Muthurathinasapathy & V. G. Venkatesh & Yangyan Shi & Samsul Islam, 2023. "Location of organ procurement and distribution organisation decisions and their impact on kidney allocations: a developing country perspective," Annals of Operations Research, Springer, vol. 321(1), pages 755-781, February.
    4. Sinem Savaşer & Ömer Burak Kınay & Bahar Yetis Kara & Pelin Cay, 2019. "Organ transplantation logistics: a case for Turkey," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(2), pages 327-356, June.
    5. Zahiri, B. & Tavakkoli-Moghaddam, R. & Mohammadi, M. & Jula, P., 2014. "Multi-objective design of an organ transplant network under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 101-124.
    6. Caruso, Valeria & Daniele, Patrizia, 2018. "A network model for minimizing the total organ transplant costs," European Journal of Operational Research, Elsevier, vol. 266(2), pages 652-662.
    7. Corrado Lanera & Honoria Ocagli & Marco Schiavon & Andrea Dell’Amore & Daniele Bottigliengo & Patrizia Bartolotta & Aslihan Senturk Acar & Giulia Lorenzoni & Paola Berchialla & Ileana Baldi & Federico, 2021. "The Surplus Transplant Lung Allocation System in Italy: An Evaluation of the Allocation Process via Stochastic Modeling," IJERPH, MDPI, vol. 18(13), pages 1-13, July.
    8. Zarrinpoor, Naeme & Fallahnezhad, Mohammad Saber & Pishvaee, Mir Saman, 2018. "The design of a reliable and robust hierarchical health service network using an accelerated Benders decomposition algorithm," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1013-1032.
    9. Maryam Radman & Kourosh Eshghi, 2018. "Designing a multi-service healthcare network based on the impact of patients’ flow among medical services," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(3), pages 637-678, July.
    10. Benneyan, James C. & Musdal, Hande & Ceyhan, Mehmet Erkan & Shiner, Brian & Watts, Bradley V., 2012. "Specialty care single and multi-period location–allocation models within the Veterans Health Administration," Socio-Economic Planning Sciences, Elsevier, vol. 46(2), pages 136-148.
    11. Kargar, Bahareh & Pishvaee, Mir Saman & Jahani, Hamed & Sheu, Jiuh-Biing, 2020. "Organ transportation and allocation problem under medical uncertainty: A real case study of liver transplantation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    12. María Florencia Arnaudo & Fernando Pablo Lago & José Alberto Bandoni, 2020. "Toma de decisiones en el sistema de salud: aportes interdisciplinarios desde la Economía de la Salud y la Ingeniería de Sistemas de Procesos," Ensayos de Economía 18310, Universidad Nacional de Colombia Sede Medellín.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mustafa Akan & Oguzhan Alagoz & Baris Ata & Fatih Safa Erenay & Adnan Said, 2012. "A Broader View of Designing the Liver Allocation System," Operations Research, INFORMS, vol. 60(4), pages 757-770, August.
    2. Burhaneddin Sandıkçı & Lisa M. Maillart & Andrew J. Schaefer & Oguzhan Alagoz & Mark S. Roberts, 2008. "Estimating the Patient's Price of Privacy in Liver Transplantation," Operations Research, INFORMS, vol. 56(6), pages 1393-1410, December.
    3. Barış Ata & Anton Skaro & Sridhar Tayur, 2017. "OrganJet: Overcoming Geographical Disparities in Access to Deceased Donor Kidneys in the United States," Management Science, INFORMS, vol. 63(9), pages 2776-2794, September.
    4. Oguzhan Alagoz & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2007. "Choosing Among Living-Donor and Cadaveric Livers," Management Science, INFORMS, vol. 53(11), pages 1702-1715, November.
    5. Oguzhan Alagoz & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2007. "Determining the Acceptance of Cadaveric Livers Using an Implicit Model of the Waiting List," Operations Research, INFORMS, vol. 55(1), pages 24-36, February.
    6. Nan Kong & Andrew J. Schaefer & Brady Hunsaker & Mark S. Roberts, 2010. "Maximizing the Efficiency of the U.S. Liver Allocation System Through Region Design," Management Science, INFORMS, vol. 56(12), pages 2111-2122, December.
    7. Murat Kurt & Mark S. Roberts & Andrew J. Schaefer & M. Utku Ünver, 2011. "Valuing Prearranged Paired Kidney Exchanges: A Stochastic Game Approach," Boston College Working Papers in Economics 785, Boston College Department of Economics, revised 14 Oct 2011.
    8. Burhaneddin Sandıkçı & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2013. "Alleviating the Patient's Price of Privacy Through a Partially Observable Waiting List," Management Science, INFORMS, vol. 59(8), pages 1836-1854, August.
    9. Sakine Batun & Andrew J. Schaefer & Atul Bhandari & Mark S. Roberts, 2018. "Optimal Liver Acceptance for Risk-Sensitive Patients," Service Science, INFORMS, vol. 10(3), pages 320-333, September.
    10. Dimitris Bertsimas & Vivek F. Farias & Nikolaos Trichakis, 2013. "Fairness, Efficiency, and Flexibility in Organ Allocation for Kidney Transplantation," Operations Research, INFORMS, vol. 61(1), pages 73-87, February.
    11. Baris Ata & Yichuan Ding & Stefanos Zenios, 2021. "An Achievable-Region-Based Approach for Kidney Allocation Policy Design with Endogenous Patient Choice," Manufacturing & Service Operations Management, INFORMS, vol. 23(1), pages 36-54, 1-2.
    12. Sahar Ahmadvand & Mir Saman Pishvaee, 2018. "An efficient method for kidney allocation problem: a credibility-based fuzzy common weights data envelopment analysis approach," Health Care Management Science, Springer, vol. 21(4), pages 587-603, December.
    13. Theophilus Dhyankumar Chellappa & Ramasubramaniam Muthurathinasapathy & V. G. Venkatesh & Yangyan Shi & Samsul Islam, 2023. "Location of organ procurement and distribution organisation decisions and their impact on kidney allocations: a developing country perspective," Annals of Operations Research, Springer, vol. 321(1), pages 755-781, February.
    14. Oguzhan Alagoz & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2004. "The Optimal Timing of Living-Donor Liver Transplantation," Management Science, INFORMS, vol. 50(10), pages 1420-1430, October.
    15. Zahra Gharibi & Michael Hahsler, 2021. "A Simulation-Based Optimization Model to Study the Impact of Multiple-Region Listing and Information Sharing on Kidney Transplant Outcomes," IJERPH, MDPI, vol. 18(3), pages 1-20, January.
    16. Sinem Savaşer & Ömer Burak Kınay & Bahar Yetis Kara & Pelin Cay, 2019. "Organ transplantation logistics: a case for Turkey," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(2), pages 327-356, June.
    17. Can Zhang & Atalay Atasu & Turgay Ayer & L. Beril Toktay, 2020. "Truthful Mechanisms for Medical Surplus Product Allocation," Manufacturing & Service Operations Management, INFORMS, vol. 22(4), pages 735-753, July.
    18. Kargar, Bahareh & Pishvaee, Mir Saman & Jahani, Hamed & Sheu, Jiuh-Biing, 2020. "Organ transportation and allocation problem under medical uncertainty: A real case study of liver transplantation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    19. Yael Deutsch & Israel David, 2020. "Benchmark policies for utility-carrying queues with impatience," Queueing Systems: Theory and Applications, Springer, vol. 95(1), pages 97-120, June.
    20. Francis Bloch & David Cantala, 2017. "Dynamic Assignment of Objects to Queuing Agents," American Economic Journal: Microeconomics, American Economic Association, vol. 9(1), pages 88-122, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:9:y:2006:i:2:p:125-142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.