IDEAS home Printed from
   My bibliography  Save this article

Estimating and forecasting the long-memory parameter in the presence of periodicity


  • C. Bisognin

    (Instituto de Matemática-UFRGS, Porto Alegre, Brazil)

  • S. R. C. Lopes

    (Instituto de Matemática-UFRGS, Porto Alegre, Brazil)


We consider one parametric and five semiparametric approaches to estimate D in SARFIMA (0, D, 0) s processes, that is, when the process is a fractionally integrated ARMA model with seasonality s. We also consider h-step-ahead forecasting for these processes. We present the proof of some features of this model and also a study based on a Monte Carlo simulation for different sample sizes and different seasonal periods. We compare the different estimation procedures analyzing the bias, the mean squared error values, and the confidence intervals for the estimators. We also consider three different methods to choose the total number of regressors in the regression analysis for the semiparametric class of estimation procedures. We apply the methodology to the Nile River flow monthly data, and also to a simulated seasonal fractionally integrated time series. Copyright © 2007 John Wiley & Sons, Ltd.

Suggested Citation

  • C. Bisognin & S. R. C. Lopes, 2007. "Estimating and forecasting the long-memory parameter in the presence of periodicity," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(6), pages 405-427.
  • Handle: RePEc:jof:jforec:v:26:y:2007:i:6:p:405-427 DOI: 10.1002/for.1030

    Download full text from publisher

    File URL:
    File Function: Link to full text; subscription required
    Download Restriction: no

    References listed on IDEAS

    1. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
    2. Velasco, Carlos, 1999. "Non-stationary log-periodogram regression," Journal of Econometrics, Elsevier, vol. 91(2), pages 325-371, August.
    3. Ray, Bonnie K., 1993. "Long-range forecasting of IBM product revenues using a seasonal fractionally differenced ARMA model," International Journal of Forecasting, Elsevier, vol. 9(2), pages 255-269, August.
    4. Barbara Olbermann & Sílvia Lopes & Valdério Reisen, 2006. "Invariance of the first difference in ARFIMA models," Computational Statistics, Springer, vol. 21(3), pages 445-461, December.
    5. Ooms, M., 1995. "Flexible Seasonal Long Memory and Economic Time Series," Econometric Institute Research Papers EI 9515-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Ye, Xunyu & Gao, Ping & Li, Handong, 2015. "Improving estimation of the fractionally differencing parameter in the SARFIMA model using tapered periodogram," Economic Modelling, Elsevier, vol. 46(C), pages 167-179.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:26:y:2007:i:6:p:405-427. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.