IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2017-41-2.html
   My bibliography  Save this article

Simulation of the Governance of Complex Systems (SimCo): Basic Concepts and Experiments on Urban Transportation

Author

Abstract

The current paper is positioned at the intersection of computer simulation, governance research, and research on infrastructure systems, such as transportation or energy. It proposes a simulation framework, “Simulation of the governance of complex systems†(SimCo), to study the governability of complex socio-technical systems experimentally by means of agent-based modelling (ABM). SimCo is rooted in a sociological macro-micro-macro model of a socio-technical system, taking into account the interplay of agents' choices (micro) and situational constraints (macro). The paper presents the conceptualization of SimCo, its elements and subsystems as well as their interactions. SimCo depicts the daily routines of users performing their tasks (e.g. going to work) by choosing among different technologies (e.g. modes of transportation), occasionally deciding to replace a worn-out technology. All components entail different dimensions that can be adjusted, thus allowing operators to purposefully intervene, for instance in the case of risk management (e.g. preventing congestion) or system transformation (e.g. towards sustainable mobility). Experiments with a basic scenario of an urban road transport system demonstrate the effects of different modes of governance (soft control, strong control and a combination of both), revealing that soft control may be the best strategy to govern a complex socio-technical system.

Suggested Citation

  • Fabian Adelt & Johannes Weyer & Sebastian Hoffmann & Andreas Ihrig, 2018. "Simulation of the Governance of Complex Systems (SimCo): Basic Concepts and Experiments on Urban Transportation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 21(2), pages 1-2.
  • Handle: RePEc:jas:jasssj:2017-41-2
    as

    Download full text from publisher

    File URL: http://jasss.soc.surrey.ac.uk/21/2/2/2.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sebastian Hoffmann & Fabian Adelt & Johannes Weyer, 2020. "Modelling End-User Behavior and Behavioral Change in Smart Grids. An Application of the Model of Frame Selection," Energies, MDPI, Open Access Journal, vol. 13(24), pages 1-26, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2017-41-2. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Flaminio Squazzoni (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.