Information and Communication Workforce Forecasting: Evidence from England
Author
Abstract
Suggested Citation
DOI: 10.26650/jspc.2023.85.1312322
Download full text from publisher
References listed on IDEAS
- Vicente, María Rosalía & López-Menéndez, Ana J. & Pérez, Rigoberto, 2015. "Forecasting unemployment with internet search data: Does it help to improve predictions when job destruction is skyrocketing?," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 132-139.
- Armida Salsiah Alisjahbana & Maman Setiawan & Nury Effendi & Teguh Santoso & Baruna Hadibrata, 2020. "The adoption of digital technology and labor demand in the Indonesian banking sector," International Journal of Social Economics, Emerald Group Publishing Limited, vol. 47(9), pages 1109-1122, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Monge, Manuel & Claudio-Quiroga, Gloria & Poza, Carlos, 2024. "Chinese economic behavior in times of covid-19. A new leading economic indicator based on Google trends," International Economics, Elsevier, vol. 177(C).
- Nikolaos Askitas & Klaus F. Zimmermann, 2015.
"The internet as a data source for advancement in social sciences,"
International Journal of Manpower, Emerald Group Publishing Limited, vol. 36(1), pages 2-12, April.
- Nikolaos Askitas & Klaus F. Zimmermann, 2015. "The Internet as a Data Source for Advancement in Social Sciences," RatSWD Working Papers 248, German Data Forum (RatSWD).
- Askitas, Nikos & Zimmermann, Klaus F., 2015. "The Internet as a Data Source for Advancement in Social Sciences," IZA Discussion Papers 8899, Institute of Labor Economics (IZA).
- Cebrián, Eduardo & Domenech, Josep, 2024. "Addressing Google Trends inconsistencies," Technological Forecasting and Social Change, Elsevier, vol. 202(C).
- SHANG, Yunfeng & XIA, Zhongwei & XIAO, Zhongyi & SHUM, Wai Yan, 2024. "An analysis of the time-lag effect of global geopolitical risk on business cycle based on visibility graph technique," Technological Forecasting and Social Change, Elsevier, vol. 209(C).
- Muneeb Ahmad & Yousaf Ali Khan & Chonghui Jiang & Syed Jawad Haider Kazmi & Syed Zaheer Abbas, 2023. "The impact of COVID‐19 on unemployment rate: An intelligent based unemployment rate prediction in selected countries of Europe," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(1), pages 528-543, January.
- Blazquez, Desamparados & Domenech, Josep, 2018. "Big Data sources and methods for social and economic analyses," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 99-113.
- Tanujit Chakraborty & Ashis Kumar Chakraborty & Munmun Biswas & Sayak Banerjee & Shramana Bhattacharya, 2021. "Unemployment Rate Forecasting: A Hybrid Approach," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 183-201, January.
- Paravee Maneejuk & Woraphon Yamaka, 2019. "Predicting Contagion from the US Financial Crisis to International Stock Markets Using Dynamic Copula with Google Trends," Mathematics, MDPI, vol. 7(11), pages 1-29, November.
- Adriana AnaMaria Davidescu & Simona-Andreea Apostu & Liviu Adrian Stoica, 2021. "Socioeconomic Effects of COVID-19 Pandemic: Exploring Uncertainty in the Forecast of the Romanian Unemployment Rate for the Period 2020–2023," Sustainability, MDPI, vol. 13(13), pages 1-22, June.
- Tuhkuri, Joonas, 2016. "Forecasting Unemployment with Google Searches," ETLA Working Papers 35, The Research Institute of the Finnish Economy.
- Bjarni G. Einarsson, 2024. "Online Monitoring of Policy Optimality," Economics wp95, Department of Economics, Central bank of Iceland.
- Benedikt Maas, 2020.
"Short‐term forecasting of the US unemployment rate,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 394-411, April.
- Maas, Benedikt, 2019. "Short-term forecasting of the US unemployment rate," MPRA Paper 94066, University Library of Munich, Germany.
- Militcyano Samuel Sapulette & Pyan A. Muchtar, 2023. "Redefining Indonesia's Digital Economy," Working Papers PB-2022-06, Economic Research Institute for ASEAN and East Asia (ERIA).
- Simionescu, Mihaela & Zimmermann, Klaus F., 2017. "Big Data and Unemployment Analysis," GLO Discussion Paper Series 81, Global Labor Organization (GLO).
- Mihaela, Simionescu, 2020. "Improving unemployment rate forecasts at regional level in Romania using Google Trends," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
- Aslanidis, Nektarios & Bariviera, Aurelio F. & López, Óscar G., 2022.
"The link between cryptocurrencies and Google Trends attention,"
Finance Research Letters, Elsevier, vol. 47(PA).
- Aslanidis, Nektarios & Fernández Bariviera, Aurelio & López, Óscar G., 2021. "The link between cryptocurrencies and Google Trends attention," Working Papers 2072/534919, Universitat Rovira i Virgili, Department of Economics.
- Simionescu, Mihaela & Cifuentes-Faura, Javier, 2022. "Can unemployment forecasts based on Google Trends help government design better policies? An investigation based on Spain and Portugal," Journal of Policy Modeling, Elsevier, vol. 44(1), pages 1-21.
- Mihaela Simionescu & Dalia Streimikiene & Wadim Strielkowski, 2020. "What Does Google Trends Tell Us about the Impact of Brexit on the Unemployment Rate in the UK?," Sustainability, MDPI, vol. 12(3), pages 1-10, January.
- Oscar Claveria, 2019.
"Forecasting the unemployment rate using the degree of agreement in consumer unemployment expectations,"
Journal for Labour Market Research, Springer;Institute for Employment Research/ Institut für Arbeitsmarkt- und Berufsforschung (IAB), vol. 53(1), pages 1-10, December.
- Claveria, Oscar, 2019. "Forecasting the unemployment rate using the degree of agreement in consumer unemployment expectations," Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 53(1), pages 1-3.
- Desamparados Blazquez & Josep Domenech & Jose-Maria Garcia-Alvarez-Coque, 2018. "Assessing Technology Platforms for Sustainability with Web Data Mining Techniques," Sustainability, MDPI, vol. 10(12), pages 1-15, November.
More about this item
Keywords
Information and Communication; Workforce; England; Time Series; Forecasting;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ist:iujspc:y:2023:i:85:p:117-126. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Istanbul University Press Operational Team (Ertuğrul YAŞAR) (email available below). General contact details of provider: https://edirc.repec.org/data/ifisttr.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.