IDEAS home Printed from https://ideas.repec.org/a/inm/orserv/v11y2019i2p138-154.html
   My bibliography  Save this article

Altering the Environment to Improve Appointment System Performance

Author

Listed:
  • Tugba Cayirli

    (Faculty of Business, Ozyegin University, Istanbul 34794, Turkey;)

  • Kum Khiong Yang

    (Lee Kong Chian School of Business, Singapore Management University, Singapore 178899)

Abstract

Current research on clinic performance is focused primarily on appointment scheduling rather than shaping the clinical environments. The goal of this study is to investigate the impact of environmental factors on the total cost performance of a clinic, measured as a weighted sum of patients’ wait times and physician’s idle time and overtime. The environmental factors investigated include the variability of service times, the probabilities of no-shows and walk-ins, the number of appointments per session, and the cost ratio of physician’s time to patients’ time. The effects of these factors are evaluated using a near-optimal rule that already adjusts the patients’ appointment times to minimize the negative effects of these factors so that their residual or true effects on total cost performance can be isolated. As a result, this study provides useful insights for healthcare practitioners in prioritizing their efforts in managing the different sources of variability to further improve the clinic performance beyond the use of an optimal or near-optimal appointment rule. Additional experiments are conducted on the effects of patient and physician unpunctuality, which have been studied to a lesser extent in prior literature.

Suggested Citation

  • Tugba Cayirli & Kum Khiong Yang, 2019. "Altering the Environment to Improve Appointment System Performance," Service Science, INFORMS, vol. 11(2), pages 138-154, June.
  • Handle: RePEc:inm:orserv:v:11:y:2019:i:2:p:138-154
    DOI: 10.1287/serv.2019.0239
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/serv.2019.0239
    Download Restriction: no

    File URL: https://libkey.io/10.1287/serv.2019.0239?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yu-Li Huang & Paulina Zuniga & Justin Marcak, 2014. "A cost-effective urgent care policy to improve patient access in a dynamic scheduled clinic setting," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(5), pages 763-776, May.
    2. Alexopoulos, Christos & Goldsman, David & Fontanesi, John & Kopald, David & Wilson, James R., 2008. "Modeling patient arrivals in community clinics," Omega, Elsevier, vol. 36(1), pages 33-43, February.
    3. Chrwan-Jyh Ho & Hon-Shiang Lau, 1992. "Minimizing Total Cost in Scheduling Outpatient Appointments," Management Science, INFORMS, vol. 38(12), pages 1750-1764, December.
    4. Michele Samorani & Subhamoy Ganguly, 2016. "Optimal Sequencing of Unpunctual Patients in High-Service-Level Clinics," Production and Operations Management, Production and Operations Management Society, vol. 25(2), pages 330-346, February.
    5. R Ashton & L Hague & M Brandreth & D Worthington & S Cropper, 2005. "A simulation-based study of a NHS Walk-in Centre," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(2), pages 153-161, February.
    6. Suresh Chand & Herbert Moskowitz & John Norris & Steve Shade & Deanna Willis, 2009. "Improving patient flow at an outpatient clinic: study of sources of variability and improvement factors," Health Care Management Science, Springer, vol. 12(3), pages 325-340, September.
    7. John Kros & Scott Dellana & David West, 2009. "Overbooking Increases Patient Access at East Carolina University's Student Health Services Clinic," Interfaces, INFORMS, vol. 39(3), pages 271-287, June.
    8. Linda V. Green & Sergei Savin, 2008. "Reducing Delays for Medical Appointments: A Queueing Approach," Operations Research, INFORMS, vol. 56(6), pages 1526-1538, December.
    9. Pablo Santibáñez & Vincent Chow & John French & Martin Puterman & Scott Tyldesley, 2009. "Reducing patient wait times and improving resource utilization at British Columbia Cancer Agency’s ambulatory care unit through simulation," Health Care Management Science, Springer, vol. 12(4), pages 392-407, December.
    10. Vissers, J. & Wijngaard, J., 1979. "The outpatient appointment system: Design of a simulation study," European Journal of Operational Research, Elsevier, vol. 3(6), pages 459-463, November.
    11. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    12. Tugba Cayirli & Evrim Didem Gunes, 2014. "Outpatient appointment scheduling in presence of seasonal walk-ins," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(4), pages 512-531, April.
    13. Chong Pan & Dali Zhang & Audrey Kon & Charity Wai & Woo Ang, 2015. "Patient flow improvement for an ophthalmic specialist outpatient clinic with aid of discrete event simulation and design of experiment," Health Care Management Science, Springer, vol. 18(2), pages 137-155, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Bowen & Tang, Jiafu & Yan, Chongjun, 2019. "A stochastic programming model for outpatient appointment scheduling considering unpunctuality," Omega, Elsevier, vol. 82(C), pages 70-82.
    2. Paola Cappanera & Filippo Visintin & Carlo Banditori & Daniele Feo, 2019. "Evaluating the long-term effects of appointment scheduling policies in a magnetic resonance imaging setting," Flexible Services and Manufacturing Journal, Springer, vol. 31(1), pages 212-254, March.
    3. Tugba Cayirli & Pinar Dursun & Evrim D. Gunes, 2019. "An integrated analysis of capacity allocation and patient scheduling in presence of seasonal walk-ins," Flexible Services and Manufacturing Journal, Springer, vol. 31(2), pages 524-561, June.
    4. Creemers, Stefan & Lambrecht, Marc R. & Beliën, Jeroen & Van den Broeke, Maud, 2021. "Evaluation of appointment scheduling rules: A multi-performance measurement approach," Omega, Elsevier, vol. 100(C).
    5. Gang Du & Xinyue Li & Hui Hu & Xiaoling Ouyang, 2018. "Optimizing Daily Service Scheduling for Medical Diagnostic Equipment Considering Patient Satisfaction and Hospital Revenue," Sustainability, MDPI, vol. 10(9), pages 1-23, September.
    6. Nguyen, Thu Ba T. & Sivakumar, Appa Iyer & Graves, Stephen C., 2018. "Capacity planning with demand uncertainty for outpatient clinics," European Journal of Operational Research, Elsevier, vol. 267(1), pages 338-348.
    7. Shehadeh, Karmel S. & Cohn, Amy E.M. & Epelman, Marina A., 2019. "Analysis of models for the Stochastic Outpatient Procedure Scheduling Problem," European Journal of Operational Research, Elsevier, vol. 279(3), pages 721-731.
    8. Pan, Xingwei & Geng, Na & Xie, Xiaolan & Wen, Jing, 2020. "Managing appointments with waiting time targets and random walk-ins," Omega, Elsevier, vol. 95(C).
    9. De Vuyst, Stijn & Bruneel, Herwig & Fiems, Dieter, 2014. "Computationally efficient evaluation of appointment schedules in health care," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1142-1154.
    10. Karmel S. Shehadeh & Amy E. M. Cohn & Ruiwei Jiang, 2021. "Using stochastic programming to solve an outpatient appointment scheduling problem with random service and arrival times," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 89-111, February.
    11. Qu, Xiuli & Peng, Yidong & Shi, Jing & LaGanga, Linda, 2015. "An MDP model for walk-in patient admission management in primary care clinics," International Journal of Production Economics, Elsevier, vol. 168(C), pages 303-320.
    12. Christos Zacharias & Tallys Yunes, 2020. "Multimodularity in the Stochastic Appointment Scheduling Problem with Discrete Arrival Epochs," Management Science, INFORMS, vol. 66(2), pages 744-763, February.
    13. Wu, Xueqi & Zhou, Shenghai, 2022. "Sequencing and scheduling appointments on multiple servers with stochastic service durations and customer arrivals," Omega, Elsevier, vol. 106(C).
    14. Deceuninck, Matthias & Fiems, Dieter & De Vuyst, Stijn, 2018. "Outpatient scheduling with unpunctual patients and no-shows," European Journal of Operational Research, Elsevier, vol. 265(1), pages 195-207.
    15. Oualid Jouini & Saif Benjaafar & Bingnan Lu & Siqiao Li & Benjamin Legros, 2022. "Appointment-driven queueing systems with non-punctual customers," Queueing Systems: Theory and Applications, Springer, vol. 101(1), pages 1-56, June.
    16. Mielczarek, Bożena, 2014. "Simulation modelling for contracting hospital emergency services at the regional level," European Journal of Operational Research, Elsevier, vol. 235(1), pages 287-299.
    17. Brian Zoll & Pratik J. Parikh & Jennie Gallimore & Stephen Harrell & Brian Burke, 2015. "Impact of Diabetes E-Consults on Outpatient Clinic Workflow," Medical Decision Making, , vol. 35(6), pages 745-757, August.
    18. Pan, Xingwei & Geng, Na & Xie, Xiaolan, 2021. "Appointment scheduling and real-time sequencing strategies for patient unpunctuality," European Journal of Operational Research, Elsevier, vol. 295(1), pages 246-260.
    19. Aditya Shetty & Harry Groenevelt & Vera Tilson, 2023. "Intraday dynamic rescheduling under patient no-shows," Health Care Management Science, Springer, vol. 26(3), pages 583-598, September.
    20. Wen-Ya Wang & Diwakar Gupta, 2011. "Adaptive Appointment Systems with Patient Preferences," Manufacturing & Service Operations Management, INFORMS, vol. 13(3), pages 373-389, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orserv:v:11:y:2019:i:2:p:138-154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.