IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v54y2006i5p829-846.html
   My bibliography  Save this article

Optimizing Chemotherapy Scheduling Using Local Search Heuristics

Author

Listed:
  • Zvia Agur

    (Institute for Medical Biomathematics, 10 Ha'Teena Street, P.O.B. 282, 60991 Bene-Ataroth, Israel, and Optimata Ltd., 11 Tuval Street, Ramat Gan 52522, Israel)

  • Refael Hassin

    (School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel)

  • Sigal Levy

    (School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel, and The Academic College of Tel-Aviv-Yaffo, 4 Antokolsky Street, Tel Aviv 61161, Israel)

Abstract

We develop a method for computing efficient patient-specific drug protocols. Using this method, we identify two general categories of anticancer drug protocols, depending on the temporal cycle parameters of the host and cancer cells: a one-time intensive treatment, or a series of nonintensive treatments. Our method is based on a theoretical and experimental work showing that treatment efficacy can be improved by determining the dosing frequency on the drug-susceptible target and host cell-cycle parameters. Simulating the patient's pharmaco-dynamics in a simple model for cell population growth, we calculate the number of drug susceptible cells at every moment of therapy. Local search heuristics are then used to conduct a search for the desired solution, as defined by our criteria. These criteria include the patient's state at the end of a predetermined time period, the number of cancer and host cells at the end of treatment, and the time to the patient's cure. The process suggested here does not depend on the exact biological assumptions of the model, thus enabling its use in a more complex description of the system. We test three solution methods. Simulated annealing is compared to threshold acceptance and old bachelor acceptance, which are less known variants to this method. The conclusions concerning the three approximation methods are that good results can be achieved by choosing the proper parameters for each of the methods, but the computational effort required for achieving good results is much greater in simulated annealing than in the other methods. Also, a large number of iterations does not guarantee better solution quality, and resources would be better used in several short searches with different parameter values than in one long search.

Suggested Citation

  • Zvia Agur & Refael Hassin & Sigal Levy, 2006. "Optimizing Chemotherapy Scheduling Using Local Search Heuristics," Operations Research, INFORMS, vol. 54(5), pages 829-846, October.
  • Handle: RePEc:inm:oropre:v:54:y:2006:i:5:p:829-846
    DOI: 10.1287/opre.1060.0320
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1060.0320
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1060.0320?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David S. Johnson & Cecilia R. Aragon & Lyle A. McGeoch & Catherine Schevon, 1989. "Optimization by Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning," Operations Research, INFORMS, vol. 37(6), pages 865-892, December.
    2. T. C. Hu & Andrew B. Kahng & Chung-Wen Albert Tsao, 1995. "Old Bachelor Acceptance: A New Class of Non-Monotone Threshold Accepting Methods," INFORMS Journal on Computing, INFORMS, vol. 7(4), pages 417-425, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sera Kahruman & Elif Ulusal & Sergiy Butenko & Illya Hicks & Kathleen Diehl, 2012. "Scheduling the adjuvant endocrine therapy for early stage breast cancer," Annals of Operations Research, Springer, vol. 196(1), pages 683-705, July.
    2. Özge Karanfil & Yaman Barlas, 2008. "A Dynamic Simulator for the Management of Disorders of the Body Water Homeostasis," Operations Research, INFORMS, vol. 56(6), pages 1474-1492, December.
    3. Xiuxian Wang & Na Geng & Jianxin Qiu & Zhibin Jiang & Liping Zhou, 2020. "Markov model and meta-heuristics combined method for cost-effectiveness analysis," Flexible Services and Manufacturing Journal, Springer, vol. 32(1), pages 213-235, March.
    4. repec:plo:pcbi00:1002206 is not listed on IDEAS
    5. Natalie Kronik & Yuri Kogan & Moran Elishmereni & Karin Halevi-Tobias & Stanimir Vuk-Pavlović & Zvia Agur, 2010. "Predicting Outcomes of Prostate Cancer Immunotherapy by Personalized Mathematical Models," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-8, December.
    6. Jinghua Shi & Oguzhan Alagoz & Fatih Erenay & Qiang Su, 2014. "A survey of optimization models on cancer chemotherapy treatment planning," Annals of Operations Research, Springer, vol. 221(1), pages 331-356, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucio Bianco & Massimiliano Caramia & Stefano Giordani & Veronica Piccialli, 2016. "A Game-Theoretic Approach for Regulating Hazmat Transportation," Transportation Science, INFORMS, vol. 50(2), pages 424-438, May.
    2. Federica Ricca & Andrea Scozzari & Bruno Simeone, 2013. "Political Districting: from classical models to recent approaches," Annals of Operations Research, Springer, vol. 204(1), pages 271-299, April.
    3. Burke, Edmund K. & Bykov, Yuri, 2017. "The late acceptance Hill-Climbing heuristic," European Journal of Operational Research, Elsevier, vol. 258(1), pages 70-78.
    4. Maria da Conceição Cunha, 1999. "On Solving Aquifer Management Problems with Simulated Annealing Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 13(3), pages 153-170, June.
    5. Goodson, Justin C. & Ohlmann, Jeffrey W. & Thomas, Barrett W., 2012. "Cyclic-order neighborhoods with application to the vehicle routing problem with stochastic demand," European Journal of Operational Research, Elsevier, vol. 217(2), pages 312-323.
    6. Helena Ramalhinho-Lourenço & Olivier C. Martin & Thomas Stützle, 2000. "Iterated local search," Economics Working Papers 513, Department of Economics and Business, Universitat Pompeu Fabra.
    7. S Küçükpetek & F Polat & H Oğuztüzün, 2005. "Multilevel graph partitioning: an evolutionary approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(5), pages 549-562, May.
    8. Dell'Amico, Mauro & Trubian, Marco, 1998. "Solution of large weighted equicut problems," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 500-521, April.
    9. Schlereth, Christian & Stepanchuk, Tanja & Skiera, Bernd, 2010. "Optimization and analysis of the profitability of tariff structures with two-part tariffs," European Journal of Operational Research, Elsevier, vol. 206(3), pages 691-701, November.
    10. Orlin, James & Sharma, Dushyant, 2003. "The Extended Neighborhood: Definition And Characterization," Working papers 4392-02, Massachusetts Institute of Technology (MIT), Sloan School of Management.
    11. Melissa Gama & Bruno Filipe Santos & Maria Paola Scaparra, 2016. "A multi-period shelter location-allocation model with evacuation orders for flood disasters," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(3), pages 299-323, September.
    12. Pirlot, Marc, 1996. "General local search methods," European Journal of Operational Research, Elsevier, vol. 92(3), pages 493-511, August.
    13. M Kumral & P A Dowd, 2005. "A simulated annealing approach to mine production scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(8), pages 922-930, August.
    14. Antunes, Antonio & Peeters, Dominique, 2001. "On solving complex multi-period location models using simulated annealing," European Journal of Operational Research, Elsevier, vol. 130(1), pages 190-201, April.
    15. Chang-Yong Lee & Dongju Lee, 2014. "Determination of initial temperature in fast simulated annealing," Computational Optimization and Applications, Springer, vol. 58(2), pages 503-522, June.
    16. Voigt, Stefan & Frank, Markus & Kuhn, Heinrich, 2025. "Last mile delivery routing problem with some-day option," European Journal of Operational Research, Elsevier, vol. 324(2), pages 477-491.
    17. Ahern, Zeke & Paz, Alexander & Corry, Paul, 2022. "Approximate multi-objective optimization for integrated bus route design and service frequency setting," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 1-25.
    18. Noureddine Bouhmala, 2019. "Combining simulated annealing with local search heuristic for MAX-SAT," Journal of Heuristics, Springer, vol. 25(1), pages 47-69, February.
    19. David Van Bulck & Dries Goossens & Andrea Schaerf, 2025. "Multi-neighbourhood simulated annealing for the ITC-2007 capacitated examination timetabling problem," Journal of Scheduling, Springer, vol. 28(2), pages 217-232, April.
    20. Van Buer, Michael G. & Woodruff, David L. & Olson, Rick T., 1999. "Solving the medium newspaper production/distribution problem," European Journal of Operational Research, Elsevier, vol. 115(2), pages 237-253, June.

    More about this item

    Keywords

    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:54:y:2006:i:5:p:829-846. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.