IDEAS home Printed from https://ideas.repec.org/a/inm/ormoor/v44y2019i1p334-353.html
   My bibliography  Save this article

Unbiased Sensitivity Estimation of One-Dimensional Diffusion Processes

Author

Listed:
  • Wanmo Kang

    (Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea)

  • Jong Mun Lee

    (MERITZ Fire and Marine Insurance, Seoul 06232, Republic of Korea)

Abstract

In this paper, we propose unbiased sensitivity estimators of the expected functionals of one-dimensional diffusion processes. Under general diffusion models, it is common to rely on discretization methods such as the Euler scheme for the generation of sample paths because of the lack of knowledge in the probability distributions associated with the diffusions. The Euler discretization method is easy to apply, but it is difficult to avoid discretization biases. As an alternative approach, we propose unbiased Monte Carlo estimators of sensitivities by taking advantage of the Beskos-Roberts method, which is an exact simulation algorithm for one-dimensional stochastic differential equations (SDEs), and applying the Poisson kernel method. The proposed estimators can be computed by discretely observed Brownian paths, and thus it is simple to implement our algorithms. We illustrate the ideas and algorithms with examples.

Suggested Citation

  • Wanmo Kang & Jong Mun Lee, 2019. "Unbiased Sensitivity Estimation of One-Dimensional Diffusion Processes," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 334-353, February.
  • Handle: RePEc:inm:ormoor:v:44:y:2019:i:1:p:334-353
    DOI: 10.1287/moor.2017.0926
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/moor.2017.0926
    Download Restriction: no

    File URL: https://libkey.io/10.1287/moor.2017.0926?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexandros Beskos & Omiros Papaspiliopoulos & Gareth O. Roberts & Paul Fearnhead, 2006. "Exact and computationally efficient likelihood‐based estimation for discretely observed diffusion processes (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 333-382, June.
    2. Casella, Bruno & Roberts, Gareth O., 2011. "Exact Simulation of Jump-Diffusion Processes with Monte Carlo Applications," MPRA Paper 95217, University Library of Munich, Germany.
    3. Eric Fournié & Jean-Michel Lasry & Pierre-Louis Lions & Jérôme Lebuchoux, 2001. "Applications of Malliavin calculus to Monte-Carlo methods in finance. II," Finance and Stochastics, Springer, vol. 5(2), pages 201-236.
    4. Nan Chen & Zhengyu Huang, 2013. "Localization and Exact Simulation of Brownian Motion-Driven Stochastic Differential Equations," Mathematics of Operations Research, INFORMS, vol. 38(3), pages 591-616, August.
    5. Mark Broadie & Paul Glasserman, 1996. "Estimating Security Price Derivatives Using Simulation," Management Science, INFORMS, vol. 42(2), pages 269-285, February.
    6. Bruno Casella & Gareth O. Roberts, 2011. "Exact Simulation of Jump-Diffusion Processes with Monte Carlo Applications," Methodology and Computing in Applied Probability, Springer, vol. 13(3), pages 449-473, September.
    7. Alexandros Beskos & Omiros Papaspiliopoulos & Gareth O. Roberts, 2008. "A Factorisation of Diffusion Measure and Finite Sample Path Constructions," Methodology and Computing in Applied Probability, Springer, vol. 10(1), pages 85-104, March.
    8. Kay Giesecke & Dmitry Smelov, 2013. "Exact Sampling of Jump Diffusions," Operations Research, INFORMS, vol. 61(4), pages 894-907, August.
    9. Arturo Kohatsu & Montero Miquel, 2003. "Malliavin calculus in finance," Economics Working Papers 672, Department of Economics and Business, Universitat Pompeu Fabra.
    10. Eric Fournié & Jean-Michel Lasry & Pierre-Louis Lions & Jérôme Lebuchoux & Nizar Touzi, 1999. "Applications of Malliavin calculus to Monte Carlo methods in finance," Finance and Stochastics, Springer, vol. 3(4), pages 391-412.
    11. Manuela Larguinho & José Carlos Dias & Carlos A. Braumann, 2013. "On the computation of option prices and Greeks under the CEV model," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 907-917, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andersson, Patrik & Kohatsu-Higa, Arturo & Yuasa, Tomooki, 2020. "Second order probabilistic parametrix method for unbiased simulation of stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 130(9), pages 5543-5574.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Herrmann, Samuel & Massin, Nicolas, 2023. "Exact simulation of the first passage time through a given level of jump diffusions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 553-576.
    2. Giesecke, K. & Schwenkler, G., 2019. "Simulated likelihood estimators for discretely observed jump–diffusions," Journal of Econometrics, Elsevier, vol. 213(2), pages 297-320.
    3. Boyle, Phelim & Potapchik, Alexander, 2008. "Prices and sensitivities of Asian options: A survey," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 189-211, February.
    4. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    5. Arturo Kohatsu-Higa & Miquel Montero, 2001. "An application of Malliavin Calculus to Finance," Papers cond-mat/0111563, arXiv.org.
    6. Jérôme Detemple & René Garcia & Marcel Rindisbacher, 2005. "Asymptotic Properties of Monte Carlo Estimators of Derivatives," Management Science, INFORMS, vol. 51(11), pages 1657-1675, November.
    7. Cont, Rama & Lu, Yi, 2016. "Weak approximation of martingale representations," Stochastic Processes and their Applications, Elsevier, vol. 126(3), pages 857-882.
    8. Chen, Nan & Glasserman, Paul, 2007. "Malliavin Greeks without Malliavin calculus," Stochastic Processes and their Applications, Elsevier, vol. 117(11), pages 1689-1723, November.
    9. Michael C. Fu, 2008. "What you should know about simulation and derivatives," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(8), pages 723-736, December.
    10. Montero, Miquel & Kohatsu-Higa, Arturo, 2003. "Malliavin Calculus applied to finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 320(C), pages 548-570.
    11. Hermann, Simone & Ickstadt, Katja & Müller, Christine H., 2018. "Bayesian prediction for a jump diffusion process – With application to crack growth in fatigue experiments," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 83-96.
    12. Detemple, Jerome & Rindisbacher, Marcel, 2007. "Monte Carlo methods for derivatives of options with discontinuous payoffs," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3393-3417, April.
    13. Kay Giesecke & Dmitry Smelov, 2013. "Exact Sampling of Jump Diffusions," Operations Research, INFORMS, vol. 61(4), pages 894-907, August.
    14. Tebaldi, Claudio, 2005. "Hedging using simulation: a least squares approach," Journal of Economic Dynamics and Control, Elsevier, vol. 29(8), pages 1287-1312, August.
    15. Maria Elvira Mancino & Simona Sanfelici, 2020. "Nonparametric Malliavin–Monte Carlo Computation of Hedging Greeks," Risks, MDPI, vol. 8(4), pages 1-17, November.
    16. Anne Laure Bronstein & Gilles Pagès & Jacques Portès, 2013. "Multi-asset American Options and Parallel Quantization," Methodology and Computing in Applied Probability, Springer, vol. 15(3), pages 547-561, September.
    17. Jakša Cvitanić & Jin Ma & Jianfeng Zhang, 2003. "Efficient Computation of Hedging Portfolios for Options with Discontinuous Payoffs," Mathematical Finance, Wiley Blackwell, vol. 13(1), pages 135-151, January.
    18. Coffie, Emmanuel & Duedahl, Sindre & Proske, Frank, 2023. "Sensitivity analysis with respect to a stochastic stock price model with rough volatility via a Bismut–Elworthy–Li formula for singular SDEs," Stochastic Processes and their Applications, Elsevier, vol. 156(C), pages 156-195.
    19. Fard, Farzad Alavi & Siu, Tak Kuen, 2013. "Pricing participating products with Markov-modulated jump–diffusion process: An efficient numerical PIDE approach," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 712-721.
    20. K. Giesecke & H. Kakavand & M. Mousavi, 2011. "Exact Simulation of Point Processes with Stochastic Intensities," Operations Research, INFORMS, vol. 59(5), pages 1233-1245, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormoor:v:44:y:2019:i:1:p:334-353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.