IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v68y2022i9p6610-6633.html
   My bibliography  Save this article

Improving Patient Transfer Protocols for Regional Stroke Networks

Author

Listed:
  • Amir Ardestani-Jaafari

    (Faculty of Management, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada)

  • Beste Kucukyazici

    (Eli Broad College of Business, Michigan State University, East Lansing, Michigan 48824)

Abstract

Currently, stroke patients are transported to the nearest stroke center, following specific protocols. Yet, these protocols do not consider many factors, including the spatial variation in population density, the stroke’s severity, the time since stroke onset, and the congestion level at the receiving stroke center. We develop an analytical framework that enriches the stroke transport decision-making process by incorporating these factors. Our research contributes to the literature of stroke care systems by (i) developing the first analytical framework to determine the optimal primary hospital destination in a regional stroke network and (ii) comparing the impact of incorporating prehospital triaging on health outcomes. To this end, we develop an efficient reformulation for allocation problems with stochastic demand and multiserver system under congestion. We derive data-driven outcome prediction models embedded in mixed integer second-order cone programming formulation. Our framework is applied to two real-life cases: Montreal and Quebec City Stroke Networks. We show that adopting a triage strategy could lead to significantly improved health outcomes, where the magnitude of these improvements varies with the networks’ sizes and congestion levels. In the Montreal case, our proposed policy may increase the ratio of patients for therapeutic intervention eligibility by 12.5% while improving by 69% the number of patients with more than two days of emergency department boarding delays. Our results reveal that it is important to consider the network’s characteristics in making a decision for or against implementing a prehospital triage strategy. Finally, we propose a heuristic policy that provides a promising performance while also being easy to implement.

Suggested Citation

  • Amir Ardestani-Jaafari & Beste Kucukyazici, 2022. "Improving Patient Transfer Protocols for Regional Stroke Networks," Management Science, INFORMS, vol. 68(9), pages 6610-6633, September.
  • Handle: RePEc:inm:ormnsc:v:68:y:2022:i:9:p:6610-6633
    DOI: 10.1287/mnsc.2021.4231
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.2021.4231
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2021.4231?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. McCormack, Richard & Coates, Graham, 2015. "A simulation model to enable the optimization of ambulance fleet allocation and base station location for increased patient survival," European Journal of Operational Research, Elsevier, vol. 247(1), pages 294-309.
    2. Opher Baron & Oded Berman & Dmitry Krass, 2008. "Facility Location with Stochastic Demand and Constraints on Waiting Time," Manufacturing & Service Operations Management, INFORMS, vol. 10(3), pages 484-505, August.
    3. Susan Budge & Armann Ingolfsson & Dawit Zerom, 2010. "Empirical Analysis of Ambulance Travel Times: The Case of Calgary Emergency Medical Services," Management Science, INFORMS, vol. 56(4), pages 716-723, April.
    4. Jónas Oddur Jónasson & Sarang Deo & Jérémie Gallien, 2017. "Improving HIV Early Infant Diagnosis Supply Chains in Sub-Saharan Africa: Models and Application to Mozambique," Operations Research, INFORMS, vol. 65(6), pages 1479-1493, December.
    5. Damitha Bandara & Maria E. Mayorga & Laura A. McLay, 2012. "Optimal dispatching strategies for emergency vehicles to increase patient survivability," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 15(2), pages 195-214.
    6. Saied Samiedaluie & Beste Kucukyazici & Vedat Verter & Dan Zhang, 2017. "Managing Patient Admissions in a Neurology Ward," Operations Research, INFORMS, vol. 65(3), pages 635-656, June.
    7. Adrian Ramirez-Nafarrate & Joshua D. Lyon & John W. Fowler & Ozgur M. Araz, 2015. "Point-of-Dispensing Location and Capacity Optimization via a Decision Support System," Production and Operations Management, Production and Operations Management Society, vol. 24(8), pages 1311-1328, August.
    8. Knight, V.A. & Harper, P.R. & Smith, L., 2012. "Ambulance allocation for maximal survival with heterogeneous outcome measures," Omega, Elsevier, vol. 40(6), pages 918-926.
    9. Laura McLay & Maria Mayorga, 2010. "Evaluating emergency medical service performance measures," Health Care Management Science, Springer, vol. 13(2), pages 124-136, June.
    10. Grossman, Thomas A. & Brandeau, Margaret L., 2002. "Optimal pricing for service facilities with self-optimizing customers," European Journal of Operational Research, Elsevier, vol. 141(1), pages 39-57, August.
    11. Sarang Deo & Milind Sohoni, 2015. "Optimal Decentralization of Early Infant Diagnosis of HIV in Resource-Limited Settings," Manufacturing & Service Operations Management, INFORMS, vol. 17(2), pages 191-207, May.
    12. Lavanya Marla & Kaushik Krishnan & Sarang Deo, 2021. "Managing EMS systems with user abandonment in emerging economies," IISE Transactions, Taylor & Francis Journals, vol. 53(4), pages 389-406, April.
    13. Oded Berman & Dmitry Krass, 2015. "Stochastic Location Models with Congestion," Springer Books, in: Gilbert Laporte & Stefan Nickel & Francisco Saldanha da Gama (ed.), Location Science, edition 127, chapter 0, pages 443-486, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McCormack, Richard & Coates, Graham, 2015. "A simulation model to enable the optimization of ambulance fleet allocation and base station location for increased patient survival," European Journal of Operational Research, Elsevier, vol. 247(1), pages 294-309.
    2. Tinglong Dai & Sridhar Tayur, 2020. "OM Forum—Healthcare Operations Management: A Snapshot of Emerging Research," Manufacturing & Service Operations Management, INFORMS, vol. 22(5), pages 869-887, September.
    3. Bélanger, V. & Ruiz, A. & Soriano, P., 2019. "Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles," European Journal of Operational Research, Elsevier, vol. 272(1), pages 1-23.
    4. Ľuboš Buzna & Peter Czimmermann, 2021. "On the Modelling of Emergency Ambulance Trips: The Case of the Žilina Region in Slovakia," Mathematics, MDPI, vol. 9(17), pages 1-30, September.
    5. De Boeck, Kim & Decouttere, Catherine & Jónasson, Jónas Oddur & Vandaele, Nico, 2022. "Vaccine supply chains in resource-limited settings: Mitigating the impact of rainy season disruptions," European Journal of Operational Research, Elsevier, vol. 301(1), pages 300-317.
    6. Turgay Ayer & Can Zhang & Anthony Bonifonte & Anne C. Spaulding & Jagpreet Chhatwal, 2019. "Prioritizing Hepatitis C Treatment in U.S. Prisons," Operations Research, INFORMS, vol. 67(3), pages 853-873, May.
    7. Areej Alhothali & Budoor Alwated & Kamil Faisal & Sultanah Alshammari & Reem Alotaibi & Nusaybah Alghanmi & Omaimah Bamasag & Manal Bin Yamin, 2022. "Location-Allocation Model to Improve the Distribution of COVID-19 Vaccine Centers in Jeddah City, Saudi Arabia," IJERPH, MDPI, vol. 19(14), pages 1-21, July.
    8. Phillip R. Jenkins & Matthew J. Robbins & Brian J. Lunday, 2018. "Examining military medical evacuation dispatching policies utilizing a Markov decision process model of a controlled queueing system," Annals of Operations Research, Springer, vol. 271(2), pages 641-678, December.
    9. Breugem, Thomas & Wolter, Tim Sergio & Van Wassenhove, Luk N., 2023. "Visit Allocation Problems in Multi-Service Settings : Policies and Worst-Case Bounds," Discussion Paper 2023-004, Tilburg University, Center for Economic Research.
    10. Harwin De Vries & Lisa E. Swinkels & Luk N. Van Wassenhove, 2021. "Site Visit Frequency Policies for Mobile Family Planning Services," Production and Operations Management, Production and Operations Management Society, vol. 30(12), pages 4522-4540, December.
    11. Cornelia Schön & Pratibha Saini, 2018. "Market-Oriented Service Network Design When Demand is Sensitive to Congestion," Transportation Science, INFORMS, vol. 52(5), pages 1253-1275, October.
    12. R. K. Jha & B. S. Sahay & P. Charan, 2016. "Healthcare operations management: a structured literature review," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 43(3), pages 259-279, September.
    13. Ahmadi-Javid, Amir & Hoseinpour, Pooya, 2019. "Service system design for managing interruption risks: A backup-service risk-mitigation strategy," European Journal of Operational Research, Elsevier, vol. 274(2), pages 417-431.
    14. Sachin Jayaswal & Navneet Vidyarthi, 2017. "Facility location under service level constraints for heterogeneous customers," Annals of Operations Research, Springer, vol. 253(1), pages 275-305, June.
    15. Hoseinpour, Pooya & Ahmadi-Javid, Amir, 2016. "A profit-maximization location-capacity model for designing a service system with risk of service interruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 96(C), pages 113-134.
    16. Jenkins, Phillip R. & Lunday, Brian J. & Robbins, Matthew J., 2020. "Robust, multi-objective optimization for the military medical evacuation location-allocation problem," Omega, Elsevier, vol. 97(C).
    17. Breugem, Thomas & Wolter, Tim Sergio & Van Wassenhove, Luk N., 2023. "Visit Allocation Problems in Multi-Service Settings : Policies and Worst-Case Bounds," Other publications TiSEM 01f06e7a-953b-479e-b351-8, Tilburg University, School of Economics and Management.
    18. Jónas Oddur Jónasson & Sarang Deo & Jérémie Gallien, 2017. "Improving HIV Early Infant Diagnosis Supply Chains in Sub-Saharan Africa: Models and Application to Mozambique," Operations Research, INFORMS, vol. 65(6), pages 1479-1493, December.
    19. Leknes, Håkon & Aartun, Eirik Skorge & Andersson, Henrik & Christiansen, Marielle & Granberg, Tobias Andersson, 2017. "Strategic ambulance location for heterogeneous regions," European Journal of Operational Research, Elsevier, vol. 260(1), pages 122-133.
    20. Ibrahim Çapar & Sharif H Melouk & Burcu B Keskin, 2017. "Alternative metrics to measure EMS system performance," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(7), pages 792-808, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:68:y:2022:i:9:p:6610-6633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.