IDEAS home Printed from
   My bibliography  Save this article

Patterned Interactions in Complex Systems: Implications for Exploration


  • Jan W. Rivkin

    () (Harvard Business School, Harvard University, 239 Morgan Hall, Boston, Massachusetts 02163)

  • Nicolaj Siggelkow

    () (The Wharton School, University of Pennsylvania, 2211 Steinberg Hall-Dietrich Hall, Philadelphia, Pennsylvania 19104)


Scholars who view organizational, social, and technological systems as sets of interdependent decisions have increasingly used simulation models from the biological and physical sciences to examine system behavior. These models shed light on an enduring managerial question: How much exploration is necessary to discover a good configuration of decisions? The models suggest that, as interactions across decisions intensify and local optima proliferate, broader exploration is required. The models typically assume, however, that the interactions among decisions are distributed randomly. Contrary to this assumption, recent empirical studies of real organizational, social, and technological systems show that interactions among decisions are highly patterned. Patterns such as centralization, small-world connections, power-law distributions, hierarchy, and preferential attachment are common. We embed such patterns into an NK simulation model and obtain dramatic results: Holding fixed the total number of interactions among decisions, a shift in the pattern of interaction can alter the number of local optima by more than an order of magnitude. Thus, the long-run value of broader exploration is significantly greater in the face of some interaction patterns than in the face of others. We develop simple, intuitive rules of thumb that allow a decision maker to examine two interaction patterns and determine which warrants greater investment in broad exploration. We also find that, holding fixed the interaction pattern, an increase in the number of interactions raises the number of local optima regardless of the pattern. This validates prior comparative static results with respect to the number of interactions, but highlights an important implicit assumption in earlier work--that the underlying interaction pattern remains constant as interactions become more numerous.

Suggested Citation

  • Jan W. Rivkin & Nicolaj Siggelkow, 2007. "Patterned Interactions in Complex Systems: Implications for Exploration," Management Science, INFORMS, vol. 53(7), pages 1068-1085, July.
  • Handle: RePEc:inm:ormnsc:v:53:y:2007:i:7:p:1068-1085
    DOI: 10.1287/mnsc.1060.0626

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Jan W. Rivkin & Nicolaj Siggelkow, 2003. "Balancing Search and Stability: Interdependencies Among Elements of Organizational Design," Management Science, INFORMS, vol. 49(3), pages 290-311, March.
    2. Marengo, Luigi, et al, 2000. "The Structure of Problem-Solving Knowledge and the Structure of Organizations," Industrial and Corporate Change, Oxford University Press, vol. 9(4), pages 757-788, December.
    3. Axelrod, Robert & Bennett, D. Scott, 1993. "A Landscape Theory of Aggregation," British Journal of Political Science, Cambridge University Press, vol. 23(2), pages 211-233, April.
    4. Sendil K. Ethiraj & Daniel Levinthal, 2004. "Modularity and Innovation in Complex Systems," Management Science, INFORMS, vol. 50(2), pages 159-173, February.
    5. Robert Axelrod & Will Mitchell & Robert E. Thomas & D. Scott Bennett & Erhard Bruderer, 1995. "Coalition Formation in Standard-Setting Alliances," Management Science, INFORMS, vol. 41(9), pages 1493-1508, September.
    6. Pimmler, Thomas U. (Thomas Udo) & Eppinger, Steven D., 1994. "Integration analysis of product decompositions," Working papers 3690-94., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    7. Alan MacCormack & John Rusnak & Carliss Y. Baldwin, 2006. "Exploring the Structure of Complex Software Designs: An Empirical Study of Open Source and Proprietary Code," Management Science, INFORMS, vol. 52(7), pages 1015-1030, July.
    8. Westhoff, Frank H. & Yarbrough, Beth V. & Yarbrough, Robert M., 1996. "Complexity, organization, and Stuart Kauffman's The Origins of Order," Journal of Economic Behavior & Organization, Elsevier, vol. 29(1), pages 1-25, January.
    9. Ghemawat, Pankaj & Ricart, Joan E., 1993. "Organizational tension between static and dynamic efficiency, The," IESE Research Papers D/255, IESE Business School.
    10. Black, Thomas A. (Thomas Andrew), 1965- & Fine, Charles H. & Sachs, Emanuel M., 1990. "A method for systems design using precedence relationships : an application to automotive brake systems," Working papers 3208-90., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    11. Joel A. C. Baum & Andrew V. Shipilov & Tim J. Rowley, 2003. "Where do small worlds come from?," Industrial and Corporate Change, Oxford University Press, vol. 12(4), pages 697-725, August.
    12. Lee Fleming, 2001. "Recombinant Uncertainty in Technological Search," Management Science, INFORMS, vol. 47(1), pages 117-132, January.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:53:y:2007:i:7:p:1068-1085. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matthew Walls). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.