IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v47y2001i11p1562-1580.html
   My bibliography  Save this article

A Coordinated Production Planning Model with Capacity Expansion and Inventory Management

Author

Listed:
  • Sampath Rajagopalan

    (Marshall School of Business, University of Southern California, Los Angeles, California 90089)

  • Jayashankar M. Swaminathan

    (The Kenan-Flagler Business School, University of North Carolina, Chapel Hill, North Carolina 27599)

Abstract

Motivated by a problem faced by a large manufacturer of a consumer product, we explore the interaction between production planning and capacity acquisition decisions in environments with demand growth. We study a firm producing multiple items in a multiperiod environment where demand for items is known but varies over time with a long-term growth and possible short-term fluctuations. The production equipment is characterized by significant changeover time between the production of different items. While demand growth is gradual, capacity additions are discrete. Therefore, periods immediately following a machine purchase are characterized by excess machine capacity. We develop a mathematical programming model and an effective solution approach to determine the optimal capacity acquisition, production and inventory decisions over time. Through a computational study, we show the effectiveness of the solution approach in terms of solution quality and investigate the impact of product variety, cost of capital, and other important parameters on the capacity and inventory decisions. The computational results bring out some key insights---increasing product variety may not result in excessive inventory and even a substantial increase in set-up times or holding costs may not increase the total cost over the horizon in a significant manner due to the ability to acquire additional capacity. We also provide solutions and insights to the real problem that motivated this work.

Suggested Citation

  • Sampath Rajagopalan & Jayashankar M. Swaminathan, 2001. "A Coordinated Production Planning Model with Capacity Expansion and Inventory Management," Management Science, INFORMS, vol. 47(11), pages 1562-1580, November.
  • Handle: RePEc:inm:ormnsc:v:47:y:2001:i:11:p:1562-1580
    DOI: 10.1287/mnsc.47.11.1562.10254
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.47.11.1562.10254
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.47.11.1562.10254?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. R. Rao, 1976. "Optimal Capacity Expansion with Inventory," Operations Research, INFORMS, vol. 24(2), pages 291-300, April.
    2. Peter J. Billington & John O. McClain & L. Joseph Thomas, 1983. "Mathematical Programming Approaches to Capacity-Constrained MRP Systems: Review, Formulation and Problem Reduction," Management Science, INFORMS, vol. 29(10), pages 1126-1141, October.
    3. Stephen C. Graves, 1981. "A Review of Production Scheduling," Operations Research, INFORMS, vol. 29(4), pages 646-675, August.
    4. Harvey M. Wagner & Thomson M. Whitin, 1958. "Dynamic Version of the Economic Lot Size Model," Management Science, INFORMS, vol. 5(1), pages 89-96, October.
    5. Salah E. Elmaghraby, 1978. "The Economic Lot Scheduling Problem (ELSP): Review and Extensions," Management Science, INFORMS, vol. 24(6), pages 587-598, February.
    6. Horst Tempelmeier & Matthias Derstroff, 1996. "A Lagrangean-Based Heuristic for Dynamic Multilevel Multiitem Constrained Lotsizing with Setup Times," Management Science, INFORMS, vol. 42(5), pages 738-757, May.
    7. Nam, Sang-jin & Logendran, Rasaratnam, 1992. "Aggregate production planning -- A survey of models and methodologies," European Journal of Operational Research, Elsevier, vol. 61(3), pages 255-272, September.
    8. Narro Lopez, Miguel A. & Kingsman, Brian G., 1991. "The economic lot scheduling problem: theory and practice," International Journal of Production Economics, Elsevier, vol. 23(1-3), pages 147-164, October.
    9. Cheng, T. C. E. & Sin, C. C. S., 1990. "A state-of-the-art review of parallel-machine scheduling research," European Journal of Operational Research, Elsevier, vol. 47(3), pages 271-292, August.
    10. Uday S. Karmarkar, 1987. "Lot Sizes, Lead Times and In-Process Inventories," Management Science, INFORMS, vol. 33(3), pages 409-418, March.
    11. Singhal, Jaya & Singhal, Kalyan, 1996. "Alternate approaches to solving the Holt et al. model and to performing sensitivity analysis," European Journal of Operational Research, Elsevier, vol. 91(1), pages 89-98, May.
    12. S. Rajagopalan, 1998. "Capacity Expansion and Equipment Replacement: A Unified Approach," Operations Research, INFORMS, vol. 46(6), pages 846-857, December.
    13. Buxey, Geoff, 1995. "A managerial perspective on aggregate planning," International Journal of Production Economics, Elsevier, vol. 41(1-3), pages 127-133, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jodlbauer, Herbert & Altendorfer, Klaus, 2010. "Trade-off between capacity invested and inventory needed," European Journal of Operational Research, Elsevier, vol. 203(1), pages 118-133, May.
    2. Lee, Chia-Yen & Charles, Vincent, 2022. "A robust capacity expansion integrating the perspectives of marginal productivity and capacity regret," European Journal of Operational Research, Elsevier, vol. 296(2), pages 557-569.
    3. Lijian Lu & Xiaoming Yan, 2016. "Capacity investment decisions under risk aversion," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(3), pages 218-235, April.
    4. Jan A. Van Mieghem, 2003. "Commissioned Paper: Capacity Management, Investment, and Hedging: Review and Recent Developments," Manufacturing & Service Operations Management, INFORMS, vol. 5(4), pages 269-302, July.
    5. Simone Guercini, 2019. "Heuristics as tales from the field: the problem of scope," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 18(2), pages 191-205, December.
    6. Martínez-Costa, Carme & Mas-Machuca, Marta & Benedito, Ernest & Corominas, Albert, 2014. "A review of mathematical programming models for strategic capacity planning in manufacturing," International Journal of Production Economics, Elsevier, vol. 153(C), pages 66-85.
    7. Hahn, G.J. & Kuhn, H., 2012. "Simultaneous investment, operations, and financial planning in supply chains: A value-based optimization approach," International Journal of Production Economics, Elsevier, vol. 140(2), pages 559-569.
    8. Lyons, Andrew Charles & Um, Juneho & Sharifi, Hossein, 2020. "Product variety, customisation and business process performance: A mixed-methods approach to understanding their relationships," International Journal of Production Economics, Elsevier, vol. 221(C).
    9. Julka, Nirupam & Baines, Tim & Tjahjono, Benny & Lendermann, Peter & Vitanov, Val, 2007. "A review of multi-factor capacity expansion models for manufacturing plants: Searching for a holistic decision aid," International Journal of Production Economics, Elsevier, vol. 106(2), pages 607-621, April.
    10. Xiuli Chao & Hong Chen & Shaohui Zheng, 2009. "Dynamic Capacity Expansion for a Service Firm with Capacity Deterioration and Supply Uncertainty," Operations Research, INFORMS, vol. 57(1), pages 82-93, February.
    11. Choi, Chul Hun & Eun, Joonyup & Cao, Jinjian & Lee, Seokcheon & Zhao, Fu, 2018. "Global strategic level supply planning of materials critical to clean energy technologies – A case study on indium," Energy, Elsevier, vol. 147(C), pages 950-964.
    12. Georgiadis, Patroklos & Athanasiou, Efstratios, 2013. "Flexible long-term capacity planning in closed-loop supply chains with remanufacturing," European Journal of Operational Research, Elsevier, vol. 225(1), pages 44-58.
    13. Jans, R.F. & Degraeve, Z., 2005. "Modeling Industrial Lot Sizing Problems: A Review," ERIM Report Series Research in Management ERS-2005-049-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    14. Koca, Esra & Yaman, Hande & Selim Aktürk, M., 2015. "Stochastic lot sizing problem with controllable processing times," Omega, Elsevier, vol. 53(C), pages 1-10.
    15. Hongmin Li & Stephen C. Graves & Woonghee Tim Huh, 2014. "Optimal Capacity Conversion for Product Transitions Under High Service Requirements," Manufacturing & Service Operations Management, INFORMS, vol. 16(1), pages 46-60, February.
    16. Majid Taghavi & Kai Huang, 2020. "A Lagrangian relaxation approach for stochastic network capacity expansion with budget constraints," Annals of Operations Research, Springer, vol. 284(2), pages 605-621, January.
    17. Jaya Singhal & Kalyan Singhal, 2008. "A Noniterative Algorithm for the Linear-Quadratic Profit-Maximization Model for Smoothing Multiproduct Production," INFORMS Journal on Computing, INFORMS, vol. 20(2), pages 169-178, May.
    18. Woonghee Tim Huh & Robin O. Roundy, 2005. "A continuous‐time strategic capacity planning model," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(4), pages 329-343, June.
    19. Klaus Altendorfer & Thomas Felberbauer & Herbert Jodlbauer, 2018. "Effects of forecast errors on optimal utilisation in aggregate production planning with stochastic customer demand," Papers 1812.00773, arXiv.org.
    20. Dulluri, Sandeep & Raghavan, N.R. Srinivasa, 2008. "Collaboration in tool development and capacity investments in high technology manufacturing networks," European Journal of Operational Research, Elsevier, vol. 187(3), pages 962-977, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jans, R.F. & Degraeve, Z., 2005. "Modeling Industrial Lot Sizing Problems: A Review," ERIM Report Series Research in Management ERS-2005-049-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    2. Brahimi, Nadjib & Dauzere-Peres, Stephane & Najid, Najib M. & Nordli, Atle, 2006. "Single item lot sizing problems," European Journal of Operational Research, Elsevier, vol. 168(1), pages 1-16, January.
    3. Kimms, Alf & Drexl, Andreas, 1996. "Multi-level lot sizing: A literature survey," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 405, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    4. Drexl, A. & Kimms, A., 1997. "Lot sizing and scheduling -- Survey and extensions," European Journal of Operational Research, Elsevier, vol. 99(2), pages 221-235, June.
    5. Huang, Hai-Jun & Xu, Gang, 1998. "Aggregate scheduling and network solving of multi-stage and multi-item manufacturing systems," European Journal of Operational Research, Elsevier, vol. 105(1), pages 52-65, February.
    6. Hein, Fanny & Almeder, Christian, 2016. "Quantitative insights into the integrated supply vehicle routing and production planning problem," International Journal of Production Economics, Elsevier, vol. 177(C), pages 66-76.
    7. Helber, Stefan & Sahling, Florian, 2010. "A fix-and-optimize approach for the multi-level capacitated lot sizing problem," International Journal of Production Economics, Elsevier, vol. 123(2), pages 247-256, February.
    8. Julia Pahl & Stefan Voß & David Woodruff, 2007. "Production planning with load dependent lead times: an update of research," Annals of Operations Research, Springer, vol. 153(1), pages 297-345, September.
    9. Almeder, Christian & Klabjan, Diego & Traxler, Renate & Almada-Lobo, Bernardo, 2015. "Lead time considerations for the multi-level capacitated lot-sizing problem," European Journal of Operational Research, Elsevier, vol. 241(3), pages 727-738.
    10. Süral, Haldun & Denizel, Meltem & Van Wassenhove, Luk N., 2009. "Lagrangean relaxation based heuristics for lot sizing with setup times," European Journal of Operational Research, Elsevier, vol. 194(1), pages 51-63, April.
    11. Drexl, Andreas & Haase, Knut, 1992. "A new type of model for multi-item capacitated dynamic lotsizing and scheduling," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 286, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    12. Grubbstrom, Robert W., 1995. "Modelling production opportunities -- an historical overview," International Journal of Production Economics, Elsevier, vol. 41(1-3), pages 1-14, October.
    13. Wolosewicz, Cathy & Dauzère-Pérès, Stéphane & Aggoune, Riad, 2015. "A Lagrangian heuristic for an integrated lot-sizing and fixed scheduling problem," European Journal of Operational Research, Elsevier, vol. 244(1), pages 3-12.
    14. Tao Wu & Leyuan Shi & Joseph Geunes & Kerem Akartunalı, 2012. "On the equivalence of strong formulations for capacitated multi-level lot sizing problems with setup times," Journal of Global Optimization, Springer, vol. 53(4), pages 615-639, August.
    15. Elena Katok & Holly S. Lewis & Terry P. Harrison, 1998. "Lot Sizing in General Assembly Systems with Setup Costs, Setup Times, and Multiple Constrained Resources," Management Science, INFORMS, vol. 44(6), pages 859-877, June.
    16. A. Kimms, 1997. "Demand shuffle—A method for multilevel proportional lot sizing and scheduling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(4), pages 319-340, June.
    17. Chang, Ping-Teng & Yao, Ming-Jong & Huang, Shih-Fen & Chen, Chia-Tsung, 2006. "A genetic algorithm for solving a fuzzy economic lot-size scheduling problem," International Journal of Production Economics, Elsevier, vol. 102(2), pages 265-288, August.
    18. Kolisch, R., 2000. "Integration of assembly and fabrication for make-to-order production," International Journal of Production Economics, Elsevier, vol. 68(3), pages 287-306, December.
    19. Rappold, James A. & Yoho, Keenan D., 2014. "Setting safety stocks for stable rotation cycle schedules," International Journal of Production Economics, Elsevier, vol. 156(C), pages 146-158.
    20. N.C. Simpson & S. Selcuk Erenguc, 2005. "Modeling multiple stage manufacturing systems with generalized costs and capacity issues," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(6), pages 560-570, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:47:y:2001:i:11:p:1562-1580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.