IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Sensitivity Analysis of Insurance Risk Models via Simulation

Listed author(s):
  • Søren Asmussen

    (Department of Mathematical Statistics, University of Lund, Box 118, 221 00 Lund, Sweden)

  • Reuven Y. Rubinstein

    (William Davidson Faculty of Industrial Engineering and Management, Technion, Haifa, Israel)

Registered author(s):

    We show how, from a single simulation run, to estimate the ruin probabilities and their sensitivities (derivatives) in a classic insurance risk model under various distributions of the number of claims and the claim size. Similar analysis is given for the tail probabilities of the accumulated claims during a fixed period. We perform sensitivity analysis with respect to both distributional and structural parameters of the underlying risk model. In the former case, we use the score function method and in the latter, a combination of the push-out method and the score function. We finally show how, from the same sample path, to derive a consistent estimator of the optimal solution in an optimization problem associated with excess-of-loss reinsurance.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Article provided by INFORMS in its journal Management Science.

    Volume (Year): 45 (1999)
    Issue (Month): 8 (August)
    Pages: 1125-1141

    in new window

    Handle: RePEc:inm:ormnsc:v:45:y:1999:i:8:p:1125-1141
    Contact details of provider: Postal:
    7240 Parkway Drive, Suite 300, Hanover, MD 21076 USA

    Phone: +1-443-757-3500
    Fax: 443-757-3515
    Web page:

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Peter W. Glynn & Donald L. Iglehart, 1989. "Importance Sampling for Stochastic Simulations," Management Science, INFORMS, vol. 35(11), pages 1367-1392, November.
    2. Philip Heidelberger & Don Towsley, 1989. "Sensitivity Analysis from Sample Paths Using Likelihoods," Management Science, INFORMS, vol. 35(12), pages 1475-1488, December.
    3. Asmussen, S. & Binswanger, K., 1997. "Simulation of Ruin Probabilities for Subexponential Claims," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 27(02), pages 297-318, November.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:45:y:1999:i:8:p:1125-1141. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.