IDEAS home Printed from https://ideas.repec.org/a/inm/ormksc/v29y2010i6p1001-1023.html
   My bibliography  Save this article

Online Demand Under Limited Consumer Search

Author

Listed:
  • Jun B. Kim

    (College of Management, Georgia Institute of Technology, Atlanta, Georgia 30308)

  • Paulo Albuquerque

    (Simon Graduate School of Business, University of Rochester, Rochester, New York 14627)

  • Bart J. Bronnenberg

    (CentER, Tilburg School of Economics and Management, University of Tilburg, 5037 AB Tilburg, The Netherlands)

Abstract

Using aggregate product search data from Amazon.com, we jointly estimate consumer information search and online demand for consumer durable goods. To estimate the demand and search primitives, we introduce an optimal sequential search process into a model of choice and treat the observed market-level product search data as aggregations of individual-level optimal search sequences. The model builds on the dynamic programming framework by Weitzman [Weitzman, M. L. 1979. Optimal search for the best alternative. Econometrica 47(3) 641-654] and combines it with a choice model. It can accommodate highly complex demand patterns at the market level. At the individual level, the model has a number of attractive properties in estimation, including closed-form expressions for the probability distribution of alternative sets of searched goods and breaking the curse of dimensionality. Using numerical experiments, we verify the model's ability to identify the heterogeneous consumer tastes and search costs from product search data. Empirically, the model is applied to the online market for camcorders and is used to answer manufacturer questions about market structure and competition and to address policy-maker issues about the effect of selectively lowered search costs on consumer surplus outcomes. We demonstrate that the demand estimates from our search model predict the actual product sales ranks. We find that consumer search for camcorders at Amazon.com is typically limited to 10-15 choice options and that this affects estimates of own and cross elasticities. In a policy simulation, we also find that the vast majority of the households benefit from Amazon.com's product recommendations via lower search costs.

Suggested Citation

  • Jun B. Kim & Paulo Albuquerque & Bart J. Bronnenberg, 2010. "Online Demand Under Limited Consumer Search," Marketing Science, INFORMS, vol. 29(6), pages 1001-1023, 11-12.
  • Handle: RePEc:inm:ormksc:v:29:y:2010:i:6:p:1001-1023
    DOI: 10.1287/mksc.1100.0574
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mksc.1100.0574
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mksc.1100.0574?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gautam Gowrisankaran & Marc Rysman, 2012. "Dynamics of Consumer Demand for New Durable Goods," Journal of Political Economy, University of Chicago Press, vol. 120(6), pages 1173-1219.
    2. Reinganum, Jennifer F., 1983. "Nash equilibrium search for the best alternative," Journal of Economic Theory, Elsevier, vol. 30(1), pages 139-152, June.
    3. Stigler, George J., 2011. "Economics of Information," Economic Policy, Russian Presidential Academy of National Economy and Public Administration, vol. 5, pages 35-49.
    4. Ali Hortaçsu & Chad Syverson, 2004. "Product Differentiation, Search Costs, and Competition in the Mutual Fund Industry: A Case Study of S&P 500 Index Funds," The Quarterly Journal of Economics, Oxford University Press, vol. 119(2), pages 403-456.
    5. Reinganum, Jennifer F, 1982. "Strategic Search Theory," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 23(1), pages 1-17, February.
    6. Patrick Bajari & Jeremy Fox & Stephen Ryan, 2008. "Evaluating wireless carrier consolidation using semiparametric demand estimation," Quantitative Marketing and Economics (QME), Springer, vol. 6(4), pages 299-338, December.
    7. Nitin Mehta & Surendra Rajiv & Kannan Srinivasan, 2003. "Price Uncertainty and Consumer Search: A Structural Model of Consideration Set Formation," Marketing Science, INFORMS, vol. 22(1), pages 58-84, June.
    8. Hernán A. Bruno & Naufel J. Vilcassim, 2008. "—Structural Demand Estimation with Varying Product Availability," Marketing Science, INFORMS, vol. 27(6), pages 1126-1131, 11-12.
    9. Erik Meijer & Jan Rouwendal, 2006. "Measuring welfare effects in models with random coefficients," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(2), pages 227-244, March.
    10. Morgan, Peter & Manning, Richard, 1985. "Optimal Search," Econometrica, Econometric Society, vol. 53(4), pages 923-944, July.
    11. Simon P. Anderson & Regis Renault, 1999. "Pricing, Product Diversity, and Search Costs: A Bertrand-Chamberlin-Diamond Model," RAND Journal of Economics, The RAND Corporation, vol. 30(4), pages 719-735, Winter.
    12. Garrett Sonnier & Andrew Ainslie & Thomas Otter, 2007. "Heterogeneity distributions of willingness-to-pay in choice models," Quantitative Marketing and Economics (QME), Springer, vol. 5(3), pages 313-331, September.
    13. Nelson, Phillip, 1970. "Information and Consumer Behavior," Journal of Political Economy, University of Chicago Press, vol. 78(2), pages 311-329, March-Apr.
    14. Weitzman, Martin L, 1979. "Optimal Search for the Best Alternative," Econometrica, Econometric Society, vol. 47(3), pages 641-654, May.
    15. Dan Horsky & Paul Nelson, 2006. "Testing the Statistical Significance of Linear Programming Estimators," Management Science, INFORMS, vol. 52(1), pages 128-135, January.
    16. Amil Petrin, 2002. "Quantifying the Benefits of New Products: The Case of the Minivan," Journal of Political Economy, University of Chicago Press, vol. 110(4), pages 705-729, August.
    17. Diamond, Peter A., 1971. "A model of price adjustment," Journal of Economic Theory, Elsevier, vol. 3(2), pages 156-168, June.
    18. Moorthy, Sridhar & Ratchford, Brian T & Talukdar, Debabrata, 1997. "Consumer Information Search Revisited: Theory and Empirical Analysis," Journal of Consumer Research, Oxford University Press, vol. 23(4), pages 263-277, March.
    19. Alan L. Montgomery & Shibo Li & Kannan Srinivasan & John C. Liechty, 2004. "Modeling Online Browsing and Path Analysis Using Clickstream Data," Marketing Science, INFORMS, vol. 23(4), pages 579-595, November.
    20. Patrick Bajari & Jeremy T. Fox & Stephen P. Ryan, 2007. "Linear Regression Estimation of Discrete Choice Models with Nonparametric Distributions of Random Coefficients," American Economic Review, American Economic Association, vol. 97(2), pages 459-463, May.
    21. Hauser, John R & Wernerfelt, Birger, 1990. "An Evaluation Cost Model of Consideration Sets," Journal of Consumer Research, Oxford University Press, vol. 16(4), pages 393-408, March.
    22. Michelle Sovinsky Goeree, 2008. "Limited Information and Advertising in the U.S. Personal Computer Industry," Econometrica, Econometric Society, vol. 76(5), pages 1017-1074, September.
    23. Nelson, Philip, 1974. "Advertising as Information," Journal of Political Economy, University of Chicago Press, vol. 82(4), pages 729-754, July/Aug..
    24. Han Hong & Matthew Shum, 2006. "Using price distributions to estimate search costs," RAND Journal of Economics, RAND Corporation, vol. 37(2), pages 257-275, June.
    25. Bresnahan, Timothy F, 1987. "Competition and Collusion in the American Automobile Industry: The 1955 Price War," Journal of Industrial Economics, Wiley Blackwell, vol. 35(4), pages 457-482, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun B. Kim & Paulo Albuquerque & Bart J. Bronnenberg, 2017. "The Probit Choice Model Under Sequential Search with an Application to Online Retailing," Management Science, INFORMS, vol. 63(11), pages 3911-3929, November.
    2. Fernando Branco & Monic Sun & J. Miguel Villas-Boas, 2012. "Optimal Search for Product Information," Management Science, INFORMS, vol. 58(11), pages 2037-2056, November.
    3. Luyi Yang & Laurens G. Debo & Varun Gupta, 2019. "Search Among Queues Under Quality Differentiation," Management Science, INFORMS, vol. 65(8), pages 3605-3623, August.
    4. Yuxin Chen & Song Yao, 2017. "Sequential Search with Refinement: Model and Application with Click-Stream Data," Management Science, INFORMS, vol. 63(12), pages 4345-4365, December.
    5. Pantelis P. Analytis & Amit Kothiyal & Konstantinos Katsikopoulos, 2014. "Multi-attribute utility models as cognitive search engines," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 9(5), pages 403-419, September.
    6. Charles Murry & Yiyi Zhou, 2020. "Consumer Search and Automobile Dealer Colocation," Management Science, INFORMS, vol. 66(5), pages 1909-1934, May.
    7. Elisabeth Honka & Pradeep Chintagunta, 2017. "Simultaneous or Sequential? Search Strategies in the U.S. Auto Insurance Industry," Marketing Science, INFORMS, vol. 36(1), pages 21-42, January.
    8. Tiago Pires, 2016. "Costly search and consideration sets in storable goods markets," Quantitative Marketing and Economics (QME), Springer, vol. 14(3), pages 157-193, September.
    9. Richards, Timothy J. & Hamilton, Stephen F. & Allender, William, 2016. "Search and price dispersion in online grocery markets," International Journal of Industrial Organization, Elsevier, vol. 47(C), pages 255-281.
    10. Timothy J. Richards & Stephen F. Hamilton & Koichi Yonezawa, 2017. "Variety and the Cost of Search in Supermarket Retailing," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 50(3), pages 263-285, May.
    11. Lin Liu & Anthony Dukes, 2013. "Consideration Set Formation with Multiproduct Firms: The Case of Within-Firm and Across-Firm Evaluation Costs," Management Science, INFORMS, vol. 59(8), pages 1871-1886, August.
    12. Choudhary, Vidyanand & Currim, Imran & Dewan, Sanjeev & Jeliazkov, Ivan & Mintz, Ofer & Turner, John, 2017. "Evaluation Set Size and Purchase: Evidence from a Product Search Engine," Journal of Interactive Marketing, Elsevier, vol. 37(C), pages 16-31.
    13. Anindya Ghose & Panagiotis G. Ipeirotis & Beibei Li, 2019. "Modeling Consumer Footprints on Search Engines: An Interplay with Social Media," Management Science, INFORMS, vol. 65(3), pages 1363-1385, March.
    14. De los Santos, Babur, 2018. "Consumer search on the Internet," International Journal of Industrial Organization, Elsevier, vol. 58(C), pages 66-105.
    15. Yongmin Chen & Tianle Zhang, 2018. "Entry and Welfare in Search Markets," Economic Journal, Royal Economic Society, vol. 128(608), pages 55-80, February.
    16. Xing Zhang & Tat Y. Chan & Ying Xie, 2018. "Price Search and Periodic Price Discounts," Management Science, INFORMS, vol. 64(2), pages 495-510, February.
    17. Jie Jennifer Zhang & Bing Jing, 2007. "The Impacts of Shopbots on Online Consumer Search," Working Papers 07-34, NET Institute, revised Sep 2007.
    18. DeSarbo, Wayne S. & Choi, Jungwhan, 1998. "A latent structure double hurdle regression model for exploring heterogeneity in consumer search patterns," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 423-455, November.
    19. Simon P. Anderson & Régis Renault, 2006. "Advertising Content," American Economic Review, American Economic Association, vol. 96(1), pages 93-113, March.
    20. Anocha Aribarg & Thomas Otter & Daniel Zantedeschi & Greg M. Allenby & Taylor Bentley & David J. Curry & Marc Dotson & Ty Henderson & Elisabeth Honka & Rajeev Kohli & Kamel Jedidi & Stephan Seiler & X, 2018. "Advancing Non-compensatory Choice Models in Marketing," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 5(1), pages 82-92, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:29:y:2010:i:6:p:1001-1023. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/inforea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Matthew Walls (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.