IDEAS home Printed from https://ideas.repec.org/a/inm/orisre/v34y2023i2p786-803.html
   My bibliography  Save this article

A Comparison of Methods for Treatment Assignment with an Application to Playlist Generation

Author

Listed:
  • Carlos Fernández-Loría

    (Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong)

  • Foster Provost

    (New York University, New York, New York 10012)

  • Jesse Anderton

    (Spotify, New York, New York 10007)

  • Benjamin Carterette

    (Spotify, New York, New York 10007)

  • Praveen Chandar

    (Spotify, New York, New York 10007)

Abstract

This study presents a systematic comparison of methods for individual treatment assignment, a general problem that arises in many applications and that has received significant attention from economists, computer scientists, and social scientists. We group the various methods proposed in the literature into three general classes of algorithms (or metalearners): learning models to predict outcomes (the O-learner), learning models to predict causal effects (the E-learner), and learning models to predict optimal treatment assignments (the A-learner). We compare the metalearners in terms of (1) their level of generality and (2) the objective function they use to learn models from data; we then discuss the implications that these characteristics have for modeling and decision making. Notably, we demonstrate analytically and empirically that optimizing for the prediction of outcomes or causal effects is not the same as optimizing for treatment assignments, suggesting that, in general, the A-learner should lead to better treatment assignments than the other metalearners. We demonstrate the practical implications of our findings in the context of choosing, for each user, the best algorithm for playlist generation in order to optimize engagement. This is the first comparison of the three different metalearners on a real-world application at scale (based on more than half a billion individual treatment assignments). In addition to supporting our analytical findings, the results show how large A/B tests can provide substantial value for learning treatment-assignment policies, rather than simply for choosing the variant that performs best on average.

Suggested Citation

  • Carlos Fernández-Loría & Foster Provost & Jesse Anderton & Benjamin Carterette & Praveen Chandar, 2023. "A Comparison of Methods for Treatment Assignment with an Application to Playlist Generation," Information Systems Research, INFORMS, vol. 34(2), pages 786-803, June.
  • Handle: RePEc:inm:orisre:v:34:y:2023:i:2:p:786-803
    DOI: 10.1287/isre.2022.1149
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/isre.2022.1149
    Download Restriction: no

    File URL: https://libkey.io/10.1287/isre.2022.1149?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stefan Wager & Susan Athey, 2018. "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
    2. Aurélie Lemmens & Sunil Gupta, 2020. "Managing Churn to Maximize Profits," Marketing Science, INFORMS, vol. 39(5), pages 956-973, September.
    3. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    4. Yingqi Zhao & Donglin Zeng & A. John Rush & Michael R. Kosorok, 2012. "Estimating Individualized Treatment Rules Using Outcome Weighted Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1106-1118, September.
    5. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    6. Keisuke Hirano & Jack R. Porter, 2009. "Asymptotics for Statistical Treatment Rules," Econometrica, Econometric Society, vol. 77(5), pages 1683-1701, September.
    7. Athey, Susan & Imbens, Guido W., 2019. "Machine Learning Methods Economists Should Know About," Research Papers 3776, Stanford University, Graduate School of Business.
    8. S. A. Murphy, 2003. "Optimal dynamic treatment regimes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 331-355, May.
    9. Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
    10. Charles F. Manski, 2004. "Statistical Treatment Rules for Heterogeneous Populations," Econometrica, Econometric Society, vol. 72(4), pages 1221-1246, July.
    11. Dehejia, Rajeev H., 2005. "Program evaluation as a decision problem," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 141-173.
    12. Bhattacharya, Debopam & Dupas, Pascaline, 2012. "Inferring welfare maximizing treatment assignment under budget constraints," Journal of Econometrics, Elsevier, vol. 167(1), pages 168-196.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Margrét Vilborg Bjarnadóttir & Louiqa Raschid, 2023. "Modeling Financial Products and Their Supply Chains," INFORMS Joural on Data Science, INFORMS, vol. 2(2), pages 138-160, October.
    2. Yiyan Huang & Cheuk Hang Leung & Siyi Wang & Yijun Li & Qi Wu, 2024. "Unveiling the Potential of Robustness in Selecting Conditional Average Treatment Effect Estimators," Papers 2402.18392, arXiv.org, revised Oct 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlos Fern'andez-Lor'ia & Foster Provost & Jesse Anderton & Benjamin Carterette & Praveen Chandar, 2020. "A Comparison of Methods for Treatment Assignment with an Application to Playlist Generation," Papers 2004.11532, arXiv.org, revised Apr 2022.
    2. Augustine Denteh & Helge Liebert, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," Working Papers 2201, Tulane University, Department of Economics.
    3. Carlos Fernández-Loría & Foster Provost, 2022. "Causal Decision Making and Causal Effect Estimation Are Not the Same…and Why It Matters," INFORMS Joural on Data Science, INFORMS, vol. 1(1), pages 4-16, April.
    4. Michael C Knaus, 2022. "Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
    5. Shosei Sakaguchi, 2021. "Estimation of Optimal Dynamic Treatment Assignment Rules under Policy Constraints," Papers 2106.05031, arXiv.org, revised Aug 2024.
    6. Toru Kitagawa & Guanyi Wang, 2021. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," CeMMAP working papers CWP28/21, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Kitagawa, Toru & Wang, Guanyi, 2023. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," Journal of Econometrics, Elsevier, vol. 232(1), pages 109-131.
    8. Davide Viviano, 2019. "Policy Targeting under Network Interference," Papers 1906.10258, arXiv.org, revised Apr 2024.
    9. Daniel F. Pellatt, 2022. "PAC-Bayesian Treatment Allocation Under Budget Constraints," Papers 2212.09007, arXiv.org, revised Jun 2023.
    10. Gabriel Okasa, 2022. "Meta-Learners for Estimation of Causal Effects: Finite Sample Cross-Fit Performance," Papers 2201.12692, arXiv.org.
    11. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Yan Liu, 2022. "Policy Learning under Endogeneity Using Instrumental Variables," Papers 2206.09883, arXiv.org, revised Mar 2024.
    13. Eric Mbakop & Max Tabord‐Meehan, 2021. "Model Selection for Treatment Choice: Penalized Welfare Maximization," Econometrica, Econometric Society, vol. 89(2), pages 825-848, March.
    14. Anders Bredahl Kock & Martin Thyrsgaard, 2017. "Optimal sequential treatment allocation," Papers 1705.09952, arXiv.org, revised Aug 2018.
    15. Garbero, Alessandra & Sakos, Grayson & Cerulli, Giovanni, 2023. "Towards data-driven project design: Providing optimal treatment rules for development projects," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    16. Michael Lechner, 2023. "Causal Machine Learning and its use for public policy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-15, December.
    17. Giovanni Cerulli, 2020. "Optimal Policy Learning: From Theory to Practice," Papers 2011.04993, arXiv.org.
    18. Kock, Anders Bredahl & Preinerstorfer, David & Veliyev, Bezirgen, 2023. "Treatment recommendation with distributional targets," Journal of Econometrics, Elsevier, vol. 234(2), pages 624-646.
    19. Kyle Colangelo & Ying-Ying Lee, 2020. "Double Debiased Machine Learning Nonparametric Inference with Continuous Treatments," Papers 2004.03036, arXiv.org, revised Sep 2023.
    20. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orisre:v:34:y:2023:i:2:p:786-803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.