IDEAS home Printed from https://ideas.repec.org/a/inm/orisre/v31y2020i4p1282-1300.html
   My bibliography  Save this article

Are Online Reviews of Physicians Reliable Indicators of Clinical Outcomes? A Focus on Chronic Disease Management

Author

Listed:
  • Danish H. Saifee

    (Culverhouse College of Business, University of Alabama, Tuscaloosa, Alabama 35487)

  • Zhiqiang (Eric) Zheng

    (Naveen Jindal School of Management, University of Texas at Dallas, Richardson, Texas 75080)

  • Indranil R. Bardhan

    (McCombs School of Business, University of Texas at Austin, Austin, Texas 78705)

  • Atanu Lahiri

    (Naveen Jindal School of Management, University of Texas at Dallas, Richardson, Texas 75080)

Abstract

Current trends on patient empowerment indicate that patients who play an active role in managing their health also seek and use information obtained from online reviews of physicians. However, it is far from certain whether patient-generated online reviews accurately reflect the quality of care provided by physicians, especially in the context of chronic disease care. Because chronic diseases require continuous care, monitoring, and multiple treatments over extended time periods, it can be quite hard for patients to assess the effectiveness of a particular physician accurately. Given this credence nature of chronic disease care, the research question is the following: what is the information value associated with online reviews of physicians who treat chronic disease patients? We address this issue by examining the link between online reviews of physicians and their patients’ actual clinical outcomes based on a granular admission–discharge data set. Contrary to popular belief, our study finds that there is no clear relationship between online reviews of physicians and their patients’ clinical outcomes, such as readmission risk or emergency room visits. Our findings have two major implications: (a) online reviews may not be helpful in the context of healthcare services with credence aspects; (b) because treatments of chronic diseases have more credence good characteristics when compared with surgeries or other acute care services, one should not extrapolate research on surgeries and acute care services to chronic disease care. Rather, one should acquire a better understanding of the information conveyed in online reviews regarding a physician’s ability to deliver certain clinical outcomes before drawing inferences. Our findings have important ramifications for all stakeholders including hospitals, physicians, patients, payers, and policymakers.

Suggested Citation

  • Danish H. Saifee & Zhiqiang (Eric) Zheng & Indranil R. Bardhan & Atanu Lahiri, 2020. "Are Online Reviews of Physicians Reliable Indicators of Clinical Outcomes? A Focus on Chronic Disease Management," Information Systems Research, INFORMS, vol. 31(4), pages 1282-1300, December.
  • Handle: RePEc:inm:orisre:v:31:y:2020:i:4:p:1282-1300
    DOI: 10.1287/isre.2020.0945
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/isre.2020.0945
    Download Restriction: no

    File URL: https://libkey.io/10.1287/isre.2020.0945?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dina Mayzlin & Yaniv Dover & Judith Chevalier, 2014. "Promotional Reviews: An Empirical Investigation of Online Review Manipulation," American Economic Review, American Economic Association, vol. 104(8), pages 2421-2455, August.
    2. David Dranove & Daniel Kessler & Mark McClellan & Mark Satterthwaite, 2003. "Is More Information Better? The Effects of "Report Cards" on Health Care Providers," Journal of Political Economy, University of Chicago Press, vol. 111(3), pages 555-588, June.
    3. Darby, Michael R & Karni, Edi, 1973. "Free Competition and the Optimal Amount of Fraud," Journal of Law and Economics, University of Chicago Press, vol. 16(1), pages 67-88, April.
    4. Monic Sun, 2012. "How Does the Variance of Product Ratings Matter?," Management Science, INFORMS, vol. 58(4), pages 696-707, April.
    5. Ritu Agarwal & Guodong (Gordon) Gao & Catherine DesRoches & Ashish K. Jha, 2010. "Research Commentary ---The Digital Transformation of Healthcare: Current Status and the Road Ahead," Information Systems Research, INFORMS, vol. 21(4), pages 796-809, December.
    6. Amitesh Agarwal & Wei Zhang & YongFang Kuo & Gulshan Sharma, 2016. "Process and Outcome Measures among COPD Patients with a Hospitalization Cared for by an Advance Practice Provider or Primary Care Physician," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-10, February.
    7. Claire Senot & Aravind Chandrasekaran & Peter T. Ward & Anita L. Tucker & Susan D. Moffatt-Bruce, 2016. "The Impact of Combining Conformance and Experiential Quality on Hospitals’ Readmissions and Cost Performance," Management Science, INFORMS, vol. 62(3), pages 829-848, March.
    8. Yubo Chen & Jinhong Xie, 2008. "Online Consumer Review: Word-of-Mouth as a New Element of Marketing Communication Mix," Management Science, INFORMS, vol. 54(3), pages 477-491, March.
    9. Uwe Dulleck & Rudolf Kerschbamer & Matthias Sutter, 2011. "The Economics of Credence Goods: An Experiment on the Role of Liability, Verifiability, Reputation, and Competition," American Economic Review, American Economic Association, vol. 101(2), pages 526-555, April.
    10. Chris Forman & Anindya Ghose & Batia Wiesenfeld, 2008. "Examining the Relationship Between Reviews and Sales: The Role of Reviewer Identity Disclosure in Electronic Markets," Information Systems Research, INFORMS, vol. 19(3), pages 291-313, September.
    11. Susan F. Lu & Huaxia Rui, 2018. "Can We Trust Online Physician Ratings? Evidence from Cardiac Surgeons in Florida," Management Science, INFORMS, vol. 64(6), pages 2557-2573, June.
    12. Nelson, Phillip, 1970. "Information and Consumer Behavior," Journal of Political Economy, University of Chicago Press, vol. 78(2), pages 311-329, March-Apr.
    13. Diwas S. Kc & Christian Terwiesch, 2009. "Impact of Workload on Service Time and Patient Safety: An Econometric Analysis of Hospital Operations," Management Science, INFORMS, vol. 55(9), pages 1486-1498, September.
    14. Indranil Bardhan & Jeong-ha (Cath) Oh & Zhiqiang (Eric) Zheng & Kirk Kirksey, 2015. "Predictive Analytics for Readmission of Patients with Congestive Heart Failure," Information Systems Research, INFORMS, vol. 26(1), pages 19-39, March.
    15. Pradeep K. Chintagunta & Shyam Gopinath & Sriram Venkataraman, 2010. "The Effects of Online User Reviews on Movie Box Office Performance: Accounting for Sequential Rollout and Aggregation Across Local Markets," Marketing Science, INFORMS, vol. 29(5), pages 944-957, 09-10.
    16. Michael Luca & Georgios Zervas, 2016. "Fake It Till You Make It: Reputation, Competition, and Yelp Review Fraud," Management Science, INFORMS, vol. 62(12), pages 3412-3427, December.
    17. David Godes & José C. Silva, 2012. "Sequential and Temporal Dynamics of Online Opinion," Marketing Science, INFORMS, vol. 31(3), pages 448-473, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoxiao Liu & Mingye Hu & Bo Sophia Xiao & Jingbo Shao, 2022. "Is my doctor around me? Investigating the impact of doctors’ presence on patients’ review behaviors on an online health platform," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(9), pages 1279-1296, September.
    2. Singha, Sumanta & Arha, Himanshu & Kar, Arpan Kumar, 2023. "Healthcare analytics: A techno-functional perspective," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
    3. Subodha Kumar & Liangfei Qiu & Arun Sen & Atish P. Sinha, 2022. "Putting analytics into action in care coordination research: Emerging issues and potential solutions," Production and Operations Management, Production and Operations Management Society, vol. 31(6), pages 2714-2738, June.
    4. Liu, Fan & Liao, Huchang & Al-Barakati, Abdullah, 2023. "Physician selection based on user-generated content considering interactive criteria and risk preferences of patients," Omega, Elsevier, vol. 115(C).
    5. Guetz, Bernhard & Bidmon, Sonja, 2023. "The Credibility of Physician Rating Websites: A Systematic Literature Review," Health Policy, Elsevier, vol. 132(C).
    6. Almorox, Eduardo Gonzalo & Stokes, Jonathan & Morciano, Marcello, 2022. "Has COVID-19 changed carer's views of health and care integration in care homes? A sentiment difference-in-difference analysis of on-line service reviews," Health Policy, Elsevier, vol. 126(11), pages 1117-1123.
    7. Kummer, Michael E. & Laitenberger, Ulrich & Rich, Cyrus E. & Hughes, Danny R. & Ayer, Turgay, 2021. "Healthy reviews! Online physician ratings reduce healthcare interruptions," ZEW Discussion Papers 21-075, ZEW - Leibniz Centre for European Economic Research.
    8. Wang, Ziwei & Chen, Hongmin & Luo, Jun & Wang, Chunming & Xu, Xinyi & Zhou, Ying, 2024. "Sharing service in healthcare systems: A recent survey," Omega, Elsevier, vol. 129(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sungsik Park & Woochoel Shin & Jinhong Xie, 2021. "The Fateful First Consumer Review," Marketing Science, INFORMS, vol. 40(3), pages 481-507, May.
    2. Cheng Zhao & Chong Alex Wang, 2023. "A cross-site comparison of online review manipulation using Benford’s law," Electronic Commerce Research, Springer, vol. 23(1), pages 365-406, March.
    3. Dominik Gutt & Jürgen Neumann & Steffen Zimmermann & Dennis Kundisch & Jianqing Chen, 2018. "Design of Review Systems - A Strategic Instrument to shape Online Review Behavior and Economic Outcomes," Working Papers Dissertations 42, Paderborn University, Faculty of Business Administration and Economics.
    4. Young Joon Park & Jaewoo Joo & Charin Polpanumas & Yeujun Yoon, 2021. "“Worse Than What I Read?” The External Effect of Review Ratings on the Online Review Generation Process: An Empirical Analysis of Multiple Product Categories Using Amazon.com Review Data," Sustainability, MDPI, vol. 13(19), pages 1-22, September.
    5. Peiyu Chen & Lorin M. Hitt & Yili Hong & Shinyi Wu, 2021. "Measuring Product Type and Purchase Uncertainty with Online Product Ratings: A Theoretical Model and Empirical Application," Information Systems Research, INFORMS, vol. 32(4), pages 1470-1489, December.
    6. Tao Lu & May Yuan & Chong (Alex) Wang & Xiaoquan (Michael) Zhang, 2022. "Histogram Distortion Bias in Consumer Choices," Management Science, INFORMS, vol. 68(12), pages 8963-8978, December.
    7. Brett Hollenbeck & Sridhar Moorthy & Davide Proserpio, 2019. "Advertising Strategy in the Presence of Reviews: An Empirical Analysis," Marketing Science, INFORMS, vol. 38(5), pages 793-811, September.
    8. Zibo Liu & Zhijie Lin & Ying Zhang & Yong Tan, 2022. "The Signaling Effect of Sampling Size in Physical Goods Sampling Via Online Channels," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 529-546, February.
    9. Warut Khern-am-nuai & Karthik Kannan & Hossein Ghasemkhani, 2018. "Extrinsic versus Intrinsic Rewards for Contributing Reviews in an Online Platform," Information Systems Research, INFORMS, vol. 29(4), pages 871-892, December.
    10. Zike Cao & Kai-Lung Hui & Hong Xu, 2018. "When Discounts Hurt Sales: The Case of Daily-Deal Markets," Information Systems Research, INFORMS, vol. 29(3), pages 567-591, September.
    11. Linyi Li & Shyam Gopinath & Stephen J. Carson, 2022. "History Matters: The Impact of Online Customer Reviews Across Product Generations," Management Science, INFORMS, vol. 68(5), pages 3878-3903, May.
    12. Ishita Chakraborty & Joyee Deb & Aniko Oery, 2020. "When Do Consumers Talk?," Cowles Foundation Discussion Papers 2254R2, Cowles Foundation for Research in Economics, Yale University, revised Jun 2022.
    13. Khim-Yong Goh & Cheng-Suang Heng & Zhijie Lin, 2013. "Social Media Brand Community and Consumer Behavior: Quantifying the Relative Impact of User- and Marketer-Generated Content," Information Systems Research, INFORMS, vol. 24(1), pages 88-107, March.
    14. Li, Yimeng & Xiong, Yu & Mariuzzo, Franco & Xia, Senmao, 2021. "The underexplored impacts of online consumer reviews: Pricing and new product design strategies in the O2O supply chain," International Journal of Production Economics, Elsevier, vol. 237(C).
    15. Liangfei Qiu & Arunima Chhikara & Asoo Vakharia, 2021. "Multidimensional Observational Learning in Social Networks: Theory and Experimental Evidence," Information Systems Research, INFORMS, vol. 32(3), pages 876-894, September.
    16. Boccali, Filippo & Mariani, Marcello M. & Visani, Franco & Mora-Cruz, Alexandra, 2022. "Innovative value-based price assessment in data-rich environments: Leveraging online review analytics through Data Envelopment Analysis to empower managers and entrepreneurs," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    17. Ana Babić Rosario & Kristine Valck & Francesca Sotgiu, 2020. "Conceptualizing the electronic word-of-mouth process: What we know and need to know about eWOM creation, exposure, and evaluation," Journal of the Academy of Marketing Science, Springer, vol. 48(3), pages 422-448, May.
    18. Dominik Gutt, 2018. "In the Eye of the Beholder? Empirically Decomposing Different Economic Implications of the Online Rating Variance," Working Papers Dissertations 40, Paderborn University, Faculty of Business Administration and Economics.
    19. Dipankar Das, 2022. "Measurement of Trustworthiness of the Online Reviews," Papers 2210.00815, arXiv.org, revised Nov 2023.
    20. Purnawirawan, Nathalia & Eisend, Martin & De Pelsmacker, Patrick & Dens, Nathalie, 2015. "A Meta-analytic Investigation of the Role of Valence in Online Reviews," Journal of Interactive Marketing, Elsevier, vol. 31(C), pages 17-27.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orisre:v:31:y:2020:i:4:p:1282-1300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.