IDEAS home Printed from https://ideas.repec.org/a/inm/orisre/v26y2015i3p552-564.html

Contemporaneous and Delayed Sales Impact of Location-Based Mobile Promotions

Author

Listed:
  • Zheng Fang

    (Department of Marketing and Electronic Commerce, School of Business, Sichuan University, 610064 Chengdu, Sichuan, China)

  • Bin Gu

    (Department of Information Systems, W. P. Carey School of Business, Arizona State University, Tempe, Arizona 85287)

  • Xueming Luo

    (Department of Marketing, Fox School of Business, Temple University, Philadelphia, Pennsylvania 19122)

  • Yunjie Xu

    (Department of Information Management and Information Systems, School of Management, Fudan University, 200433 Shanghai, China)

Abstract

Can location-based mobile promotion (LMP) trigger contemporaneous and delayed sales purchases? As mobile technologies can reach users anywhere and anytime, LMP becomes a promising new channel. We unravel the dynamic sales impact of LMP on the basis of a randomized field experiment with 22,000 mobile users sponsored by one of the largest mobile service providers in the world. Our identification strategy is to gauge the marginal increases in consumer purchases of the geo-fenced treatment group of users who received LMP, above and beyond the baseline control groups. There are two controls: one group who received the same LMP but not in the virtual geo-fencing locational range (nongeo-fenced control), and the other who did not receive the LMP but in the geo-fencing range (geo-fenced control). The latter control serves as an organic holdout baseline from the similar population, i.e., counterfactual test of what if without the mobile LMP intervention, to identify the actual “lift” of incremental purchases caused by the treatment with the mobile LMP intervention. Findings suggest that LMP treatment has a significantly stronger impact on contemporaneous (same-day) purchases and delayed (subsequent-days) purchases than the controls. The randomized experiment design renders these findings robust to alternative explanations such as mobile usage behavior heterogeneity, product effects heterogeneity, nonrandomized sample-selection bias, and endogeneity concerns. Follow-up surveys with the field experiment users explore the nuanced mechanisms via which LMP may induce the impulsive, same-day purchases, and create product awareness for the planned subsequent-days purchases. LMP can generate six times more purchases than nongeo-fenced control with the LMP intervention, and 12 times more than geo-fenced control without the LMP intervention. LMP has a delayed sales effect for 12 days after the mobile promotions. The total sales impact of LMP could be underestimated by 54% if excluding the delayed sales impact and only including the contemporaneous impact. These findings are new to the literature and often neglected in mobile promotion practices, proffering novel implications on the sales value of LMP in the mobile era.

Suggested Citation

  • Zheng Fang & Bin Gu & Xueming Luo & Yunjie Xu, 2015. "Contemporaneous and Delayed Sales Impact of Location-Based Mobile Promotions," Information Systems Research, INFORMS, vol. 26(3), pages 552-564, September.
  • Handle: RePEc:inm:orisre:v:26:y:2015:i:3:p:552-564
    DOI: 10.1287/isre.2015.0586
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/isre.2015.0586
    Download Restriction: no

    File URL: https://libkey.io/10.1287/isre.2015.0586?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Avi Goldfarb & Catherine Tucker, 2011. "Rejoinder--Implications of "Online Display Advertising: Targeting and Obtrusiveness"," Marketing Science, INFORMS, vol. 30(3), pages 413-415, 05-06.
    2. Chris Forman & Anindya Ghose & Avi Goldfarb, 2009. "Competition Between Local and Electronic Markets: How the Benefit of Buying Online Depends on Where You Live," Management Science, INFORMS, vol. 55(1), pages 47-57, January.
    3. Hoch, Stephen J & Loewenstein, George F, 1991. "Time-Inconsistent Preferences and Consumer Self-Control," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 17(4), pages 492-507, March.
    4. Avi Goldfarb & Catherine Tucker, 2011. "Online Display Advertising: Targeting and Obtrusiveness," Marketing Science, INFORMS, vol. 30(3), pages 389-404, 05-06.
    5. Anindya Ghose & Panagiotis G. Ipeirotis & Beibei Li, 2012. "Designing Ranking Systems for Hotels on Travel Search Engines by Mining User-Generated and Crowdsourced Content," Marketing Science, INFORMS, vol. 31(3), pages 493-520, May.
    6. Prasanna Tambe & Lorin M. Hitt, 2012. "The Productivity of Information Technology Investments: New Evidence from IT Labor Data," Information Systems Research, INFORMS, vol. 23(3-part-1), pages 599-617, September.
    7. Guodong (Gordon) Gao & Lorin M. Hitt, 2012. "Information Technology and Trademarks: Implications for Product Variety," Management Science, INFORMS, vol. 58(6), pages 1211-1226, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Imran Bashir Dar & Muhammad Bashir Khan & Abdul Zahid Khan & Bahaudin G. Mujtaba, 2021. "A qualitative analysis of the marketing analytics literature: where would ethical issues and legality rank?," Journal of Marketing Analytics, Palgrave Macmillan, vol. 9(3), pages 242-261, September.
    2. Anindya Ghose & Vilma Todri, 2015. "Towards a Digital Attribution Model: Measuring the Impact of Display Advertising on Online Consumer Behavior," Working Papers 15-15, NET Institute.
    3. Anindya Ghose & Panagiotis G. Ipeirotis & Beibei Li, 2014. "Examining the Impact of Ranking on Consumer Behavior and Search Engine Revenue," Management Science, INFORMS, vol. 60(7), pages 1632-1654, July.
    4. Xueming Luo & Michelle Andrews & Zheng Fang & Chee Wei Phang, 2014. "Mobile Targeting," Management Science, INFORMS, vol. 60(7), pages 1738-1756, July.
    5. Hsing Kenneth Cheng & D. Daniel Sokol & Xinyu Zang, 2024. "The rise of empirical online platform research in the new millennium," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 33(2), pages 416-451, March.
    6. Shengjun Mao & Sanjeev Dewan & Yi-Jen (Ian) Ho, 2023. "Personalized Ranking at a Mobile App Distribution Platform," Information Systems Research, INFORMS, vol. 34(3), pages 811-827, September.
    7. Anindya Ghose & Avi Goldfarb & Sang Pil Han, 2013. "How Is the Mobile Internet Different? Search Costs and Local Activities," Information Systems Research, INFORMS, vol. 24(3), pages 613-631, September.
    8. Shun-Yang Lee & Julian Runge & Daniel Yoo & Yakov Bart & Anett Gyurak & J. W. Schneider, 2023. "COVID-19 Demand Shocks Revisited: Did Advertising Technology Help Mitigate Adverse Consequences for Small and Midsize Businesses?," Papers 2307.09035, arXiv.org, revised Jan 2024.
    9. Potoglou, Dimitris & Palacios, Juan & Feijoo, Claudio & Gómez Barroso, Jose-Luis, 2015. "The supply of personal information: A study on the determinants of information provision in e-commerce scenarios," 26th European Regional ITS Conference, Madrid 2015 127174, International Telecommunications Society (ITS).
    10. Yanwen Wang & Chunhua Wu & Ting Zhu, 2019. "Mobile Hailing Technology and Taxi Driving Behaviors," Marketing Science, INFORMS, vol. 38(5), pages 734-755, September.
    11. Seung-Hyun Lee & Hee Jin Mun & Kyung Min Park, 2015. "When is dependence on other organizations burdensome? The effect of asymmetric dependence on internet firm failure," Strategic Management Journal, Wiley Blackwell, vol. 36(13), pages 2058-2074, December.
    12. Mariia I. Okuneva & Dmitriy B. Potapov, 2015. "The Effectiveness of Individual Targeting Through Smartphone Application in Retail: Evidence from Field Experiment," HSE Working papers WP BRP 47/MAN/2015, National Research University Higher School of Economics.
    13. Randall Lewis & Dan Nguyen, 2015. "Display advertising’s competitive spillovers to consumer search," Quantitative Marketing and Economics (QME), Springer, vol. 13(2), pages 93-115, June.
    14. Harikesh S. Nair & Sanjog Misra & William J. Hornbuckle IV & Ranjan Mishra & Anand Acharya, 2017. "Big Data and Marketing Analytics in Gaming: Combining Empirical Models and Field Experimentation," Marketing Science, INFORMS, vol. 36(5), pages 699-725, September.
    15. Henk Kox & Bas Straathof & Gijsbert Zwart, 2017. "Targeted advertising, platform competition, and privacy," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 26(3), pages 557-570, September.
    16. Paramveer S. Dhillon & Sinan Aral, 2021. "Modeling Dynamic User Interests: A Neural Matrix Factorization Approach," Marketing Science, INFORMS, vol. 40(6), pages 1059-1080, November.
    17. Morlok, Tina & Matt, Christian & Hess, Thomas, 2017. "Privatheitsforschung in den Wirtschaftswissenschaften: Entwicklung, Stand und Perspektiven," Working Papers 1/2017, University of Munich, Munich School of Management, Institute for Information Systems and New Media.
    18. K. Sudhir & Seung Yoon Lee & Subroto Roy, 2021. "Lookalike Targeting on Others' Journeys: Brand Versus Performance Marketing," Cowles Foundation Discussion Papers 2302R, Cowles Foundation for Research in Economics, Yale University, revised Jun 2022.
    19. Aguirre, Elizabeth & Mahr, Dominik & Grewal, Dhruv & de Ruyter, Ko & Wetzels, Martin, 2015. "Unraveling the Personalization Paradox: The Effect of Information Collection and Trust-Building Strategies on Online Advertisement Effectiveness," Journal of Retailing, Elsevier, vol. 91(1), pages 34-49.
    20. Xiang Hui & Meng Liu & Tat Chan, 2023. "Targeted incentives, broad impacts: Evidence from an E-commerce platform," Quantitative Marketing and Economics (QME), Springer, vol. 21(4), pages 493-517, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orisre:v:26:y:2015:i:3:p:552-564. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.