IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v32y2002i3p30-61.html
   My bibliography  Save this article

Tutorial on Computational Complexity

Author

Listed:
  • Craig A. Tovey

    (School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332)

Abstract

Computational complexity measures how much work is required to solve different problems. It provides a useful classification tool for OR/MS practitioners, especially when tackling discrete deterministic problems. Use it to tell, in advance, whether a problem is easy or hard. Knowing this won't solve your problem, but it will help you to decide what kind of solution method is appropriate. Complexity analysis helps you to understand and deal with hard problems. It can pinpoint the nasty parts of your problem, alert you to a special structure you can take advantage of, and guide you to model more effectively. You will solve your problem better when you know the borders between hard and easy. Locating the difficulty can indicate where to aggregate, decompose, or simplify. To detect and prove computational difficulty, show that a known hard problem from the literature is embedded within your problem. Fix parameters of your problem to arrive at the known hard problem, or use specialization, padding, forcing, or the more difficult gadget proofs. Study contrasting pairs of easy and hard problems to develop your intuitive ability to assess complexity.

Suggested Citation

  • Craig A. Tovey, 2002. "Tutorial on Computational Complexity," Interfaces, INFORMS, vol. 32(3), pages 30-61, June.
  • Handle: RePEc:inm:orinte:v:32:y:2002:i:3:p:30-61
    DOI: 10.1287/inte.32.3.30.39
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/inte.32.3.30.39
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.32.3.30.39?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Arthur M. Geoffrion, 1987. "An Introduction to Structured Modeling," Management Science, INFORMS, vol. 33(5), pages 547-588, May.
    2. Michael W. Carter & Craig A. Tovey, 1992. "When Is the Classroom Assignment Problem Hard?," Operations Research, INFORMS, vol. 40(1-supplem), pages 28-39, February.
    3. Julien Bramel & David Simchi-Levi, 1995. "A Location Based Heuristic for General Routing Problems," Operations Research, INFORMS, vol. 43(4), pages 649-660, August.
    4. Steven T. Hackman & Robert C. Leachman, 1989. "A General Framework for Modeling Production," Management Science, INFORMS, vol. 35(4), pages 478-495, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mavrommatis, George, 2008. "Learning objects and objectives towards automatic learning construction," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1449-1458, June.
    2. Yongjie Yang & Dinko Dimitrov, 2019. "The complexity of shelflisting," Theory and Decision, Springer, vol. 86(1), pages 123-141, February.
    3. Yang, Yongjie & Dimitrov, Dinko, 2023. "Group control for consent rules with consecutive qualifications," Mathematical Social Sciences, Elsevier, vol. 121(C), pages 1-7.
    4. Alexandra M. Newman & Martin Weiss, 2013. "A Survey of Linear and Mixed-Integer Optimization Tutorials," INFORMS Transactions on Education, INFORMS, vol. 14(1), pages 26-38, September.
    5. Constantine N. Goulimis, 2007. "ASP, The Art and Science of Practice: Appeal to NP-Completeness Considered Harmful: Does the Fact That a Problem Is NP-Complete Tell Us Anything?," Interfaces, INFORMS, vol. 37(6), pages 584-586, December.
    6. E A Silver, 2004. "An overview of heuristic solution methods," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(9), pages 936-956, September.
    7. Milad Zamanifar & Timo Hartmann, 2020. "Optimization-based decision-making models for disaster recovery and reconstruction planning of transportation networks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 1-25, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haeussler, S. & Stampfer, C. & Missbauer, H., 2020. "Comparison of two optimization based order release models with fixed and variable lead times," International Journal of Production Economics, Elsevier, vol. 227(C).
    2. Daniel Adelman & Diego Klabjan, 2005. "Duality and Existence of Optimal Policies in Generalized Joint Replenishment," Mathematics of Operations Research, INFORMS, vol. 30(1), pages 28-50, February.
    3. Amit V. Deokar & Omar F. El-Gayar, 2011. "Decision-enabled dynamic process management for networked enterprises," Information Systems Frontiers, Springer, vol. 13(5), pages 655-668, November.
    4. Ghadimi, Foad & Aouam, Tarik & Haeussler, Stefan & Uzsoy, Reha, 2022. "Integrated and hierarchical systems for coordinating order acceptance and release planning," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1277-1289.
    5. Joseph G. Davis & Eswaran Subrahmanian & Arthur W. Westerberg, 1999. "SCOPE: a blackboard model‐based decision support system for crude‐oil trading," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 8(2), pages 89-104, June.
    6. Gu, Jifa & Tang, Xijin, 2005. "Meta-synthesis approach to complex system modeling," European Journal of Operational Research, Elsevier, vol. 166(3), pages 597-614, November.
    7. Cherchye, Laurens & De Rock, Bram & Kerstens, Pieter Jan, 2018. "Production with storable and durable inputs: Nonparametric analysis of intertemporal efficiency," European Journal of Operational Research, Elsevier, vol. 270(2), pages 498-513.
    8. Kefeli, Ali & Uzsoy, Reha & Fathi, Yahya & Kay, Michael, 2011. "Using a mathematical programming model to examine the marginal price of capacitated resources," International Journal of Production Economics, Elsevier, vol. 131(1), pages 383-391, May.
    9. T L Nyerges, 1991. "Geographic Information Abstractions: Conceptual Clarity for Geographic Modeling," Environment and Planning A, , vol. 23(10), pages 1483-1499, October.
    10. Park, Hyeongjun & Park, Dongjoo & Jeong, In-Jae, 2016. "An effects analysis of logistics collaboration in last-mile networks for CEP delivery services," Transport Policy, Elsevier, vol. 50(C), pages 115-125.
    11. Raphael Medeiros Alves & Francisco Cunha & Anand Subramanian & Alisson V. Brito, 2022. "Minimizing energy consumption in a real-life classroom assignment problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(4), pages 1149-1175, December.
    12. Mark S. Daskin, 2008. "What you should know about location modeling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(4), pages 283-294, June.
    13. Philip Kaminsky & David Simchi-Levi, 1998. "Probabilistic Analysis and Practical Algorithms for the Flow Shop Weighted Completion Time Problem," Operations Research, INFORMS, vol. 46(6), pages 872-882, December.
    14. Leachman, Robert C. & Johnston, Lenrick & Li, Shan & Shen, Zuo-Jun, 2014. "An automated planning engine for biopharmaceutical production," European Journal of Operational Research, Elsevier, vol. 238(1), pages 327-338.
    15. W. Jill Harrison & K.R. Pearson, 1994. "Multiregional and Intertemporal AGE Modelling via GEMPACK," Centre of Policy Studies/IMPACT Centre Working Papers ip-66, Victoria University, Centre of Policy Studies/IMPACT Centre.
    16. César Rego, 1998. "A Subpath Ejection Method for the Vehicle Routing Problem," Management Science, INFORMS, vol. 44(10), pages 1447-1459, October.
    17. Giampiero E. G. Beroggi, 1999. "The Teachers' Forum: Visual Interactive Decision Modeling (VIDEMO) for Problem Solving—A Hypermedia Concept in Education," Interfaces, INFORMS, vol. 29(5), pages 82-94, October.
    18. Anton J. Kleywegt & Vijay S. Nori & Martin W. P. Savelsbergh, 2004. "Dynamic Programming Approximations for a Stochastic Inventory Routing Problem," Transportation Science, INFORMS, vol. 38(1), pages 42-70, February.
    19. Zhaofang Mao & Dian Huang & Kan Fang & Chengbo Wang & Dandan Lu, 2020. "Milk-run routing problem with progress-lane in the collection of automobile parts," Annals of Operations Research, Springer, vol. 291(1), pages 657-684, August.
    20. Antoon W.J. Kolen & Jan Karel Lenstra & Christos H. Papadimitriou & Frits C.R. Spieksma, 2007. "Interval scheduling: A survey," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(5), pages 530-543, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:32:y:2002:i:3:p:30-61. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.