IDEAS home Printed from https://ideas.repec.org/a/imx/journl/v16y2021i3a5.html
   My bibliography  Save this article

COVID-19 Pandemic Initial Effects on the Idiosyncratic Risk in Latin America

Author

Listed:
  • Andre Assis de Salles

    (Federal University of Rio de Janeiro, Brasil)

Abstract

Este trabajo tiene como objetivo estimar el riesgo idiosincrásico de las economías latinoamericanas y las economías emergentes utilizando modelos condicionales heterocedásticos para verificar el impacto de la pandemia Covid-19 sobre el riesgo asociado a los proyectos productivos. La metodología utilizada se basa en la teoría de la cartera para estimar el riesgo idiosincrásico. Los resultados destacan que las economías latinoamericanas son más susceptibles a crisis sanitarias que las economías emergentes. La incapacidad de los países emergentes para generar los ahorros necesarios para su desarrollo, impone la necesidad de atraer recursos para la financiación e inversión de proyectos. Así, determinar el riesgo específico de los países latinoamericanos es fundamental para los inversores internacionales dándoles un parámetro más a la hora de decidir sobre inversián o financiación en el continente. De manera original, este trabajo demuestra cómo la crisis derivada de la pandemia Covid-19 afectó el riesgo idiosincrásico o especéfico de las economías latinoamericanas utilizando sus indicadores del mercado de capitales. Este estudio contribuye a la evaluación del riesgo específico o riesgo país de las economías latinoamericanas al inicio de la pandemia.

Suggested Citation

  • Andre Assis de Salles, 2021. "COVID-19 Pandemic Initial Effects on the Idiosyncratic Risk in Latin America," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(3), pages 1-21, Julio - S.
  • Handle: RePEc:imx:journl:v:16:y:2021:i:3:a:5
    as

    Download full text from publisher

    File URL: https://www.remef.org.mx/index.php/remef/article/view/632
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Scholes, Myron & Williams, Joseph, 1977. "Estimating betas from nonsynchronous data," Journal of Financial Economics, Elsevier, vol. 5(3), pages 309-327, December.
    2. William F. Sharpe, 1963. "A Simplified Model for Portfolio Analysis," Management Science, INFORMS, vol. 9(2), pages 277-293, January.
    3. Shi, Huai-Long & Zhou, Wei-Xing, 2021. "Horse race of weekly idiosyncratic momentum strategies with respect to various risk metrics: Evidence from the Chinese stock market," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    4. Rosenberg, Barr & McKibben, Walt, 1973. "The Prediction of Systematic and Specific Risk in Common Stocks," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 8(2), pages 317-333, March.
    5. Akhtaruzzaman, Md & Boubaker, Sabri & Chiah, Mardy & Zhong, Angel, 2021. "COVID−19 and oil price risk exposure," Finance Research Letters, Elsevier, vol. 42(C).
    6. Landis MacKellar, 2007. "Pandemic Influenza: A Review," Population and Development Review, The Population Council, Inc., vol. 33(3), pages 429-451, September.
    7. Andrew Atkeson, 2020. "What Will be the Economic Impact of COVID-19 in the US? Rough Estimates of Disease Scenarios," Staff Report 595, Federal Reserve Bank of Minneapolis.
    8. Blitz, David & Hanauer, Matthias X. & Vidojevic, Milan, 2020. "The idiosyncratic momentum anomaly," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 932-957.
    9. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    10. Warwick McKibbin & Roshen Fernando, 2021. "The Global Macroeconomic Impacts of COVID-19: Seven Scenarios," Asian Economic Papers, MIT Press, vol. 20(2), pages 1-30, Summer.
    11. Sanjay Kalra, 2008. "Global Volatility and Forex Returns in East Asia," IMF Working Papers 2008/208, International Monetary Fund.
    12. Robert J. Barro & José F. Ursua & Joanna Weng, 2020. "The Coronavirus and the Great Influenza Epidemic - Lessons from the "Spanish Flu" for the Coronavirus's Potential Effects on Mortality and Economic Activity," CESifo Working Paper Series 8166, CESifo.
    13. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    14. Angelidis, Timotheos & Tessaromatis, Nikolaos, 2008. "Idiosyncratic volatility and equity returns: UK evidence," International Review of Financial Analysis, Elsevier, vol. 17(3), pages 539-556, June.
    15. repec:aei:rpaper:1008560098 is not listed on IDEAS
    16. Fu, Fangjian, 2009. "Idiosyncratic risk and the cross-section of expected stock returns," Journal of Financial Economics, Elsevier, vol. 91(1), pages 24-37, January.
    17. Chang, Rosita P. & Ko, Kuan-Cheng & Nakano, Shinji & Ghon Rhee, S., 2018. "Residual momentum in Japan," Journal of Empirical Finance, Elsevier, vol. 45(C), pages 283-299.
    18. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Assis de Salles, Andre, 2021. "Assessing the First Shocks of Covid-19 Pandemic on the Idiosyncratic Risk in the Brazilian and the Emerging Markets," MPRA Paper 113586, University Library of Munich, Germany.
    2. Andre Assis de Salles, 2023. "Assessing the First Shocks of the Covid-19 Pandemic on the Idiosyncratic Risk in the Brazilian and the Others Emerging Markets," Technium Business and Management, Technium Science, vol. 4(1), pages 1-9.
    3. Shi, Huai-Long & Chen, Huayi, 2024. "Understanding co-movements based on heterogeneous information associations," International Review of Financial Analysis, Elsevier, vol. 94(C).
    4. Campbell, John Y. & Giglio, Stefano & Polk, Christopher & Turley, Robert, 2018. "An intertemporal CAPM with stochastic volatility," Journal of Financial Economics, Elsevier, vol. 128(2), pages 207-233.
    5. Choi, Jaewon & Richardson, Matthew, 2016. "The volatility of a firm's assets and the leverage effect," Journal of Financial Economics, Elsevier, vol. 121(2), pages 254-277.
    6. Takahashi, Hidenori & Yamada, Kazuo, 2021. "When the Japanese stock market meets COVID-19: Impact of ownership, China and US exposure, and ESG channels," International Review of Financial Analysis, Elsevier, vol. 74(C).
    7. Nicolau, Juan Luis & Sharma, Abhinav, 2022. "A review of research into drivers of firm value through event studies in tourism and hospitality: Launching the Annals of Tourism Research curated collection on drivers of firm value through event stu," Annals of Tourism Research, Elsevier, vol. 95(C).
    8. Shi, Huai-Long & Zhou, Wei-Xing, 2021. "Horse race of weekly idiosyncratic momentum strategies with respect to various risk metrics: Evidence from the Chinese stock market," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    9. Dimson, Elroy & Mussavian, Massoud, 1999. "Three centuries of asset pricing," Journal of Banking & Finance, Elsevier, vol. 23(12), pages 1745-1769, December.
    10. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    11. Sebastien Valeyre, 2020. "Refined model of the covariance/correlation matrix between securities," Papers 2001.08911, arXiv.org.
    12. Brockman, Paul & Guo, Tao & Vivero, Maria Gabriela & Yu, Wayne, 2022. "Is idiosyncratic risk priced? The international evidence," Journal of Empirical Finance, Elsevier, vol. 66(C), pages 121-136.
    13. Chuxuan Xiao & Winifred Huang & David P. Newton, 2024. "Predicting expected idiosyncratic volatility: Empirical evidence from ARFIMA, HAR, and EGARCH models," Review of Quantitative Finance and Accounting, Springer, vol. 63(3), pages 979-1006, October.
    14. Xiafei Li & Chris Brooks & Joëlle Miffre, 2009. "The Value Premium and Time-Varying Volatility," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 36(9-10), pages 1252-1272.
    15. Shi, Yanlin & Ho, Kin-Yip & Liu, Wai-Man, 2016. "Public information arrival and stock return volatility: Evidence from news sentiment and Markov Regime-Switching Approach," International Review of Economics & Finance, Elsevier, vol. 42(C), pages 291-312.
    16. Corhay, A. & Rad, A. Tourani, 1996. "Conditional heteroskedasticity adjusted market model and an event study," The Quarterly Review of Economics and Finance, Elsevier, vol. 36(4), pages 529-538.
    17. Bathia, Deven & Bouras, Christos & Demirer, Riza & Gupta, Rangan, 2020. "Cross-border capital flows and return dynamics in emerging stock markets: Relative roles of equity and debt flows," Journal of International Money and Finance, Elsevier, vol. 109(C).
    18. Bu, Ruijun & Fu, Xi & Jawadi, Fredj, 2019. "Does the volatility of volatility risk forecast future stock returns?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 61(C), pages 16-36.
    19. Stanislav Bozhkov & Habin Lee & Uthayasankar Sivarajah & Stella Despoudi & Monomita Nandy, 2020. "Idiosyncratic risk and the cross-section of stock returns: the role of mean-reverting idiosyncratic volatility," Annals of Operations Research, Springer, vol. 294(1), pages 419-452, November.
    20. Olbryś Joanna, 2012. "Arch Effects in Multifactor Market-Timing Models of Polish Mutual Funds," Folia Oeconomica Stetinensia, Sciendo, vol. 10(2), pages 60-80, January.

    More about this item

    Keywords

    Covid-19 Pandemic; Idiosyncratic Risk; Latin American Economy;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • F36 - International Economics - - International Finance - - - Financial Aspects of Economic Integration
    • G01 - Financial Economics - - General - - - Financial Crises
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • N26 - Economic History - - Financial Markets and Institutions - - - Latin America; Caribbean

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:imx:journl:v:16:y:2021:i:3:a:5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ricardo Mendoza (email available below). General contact details of provider: https://www.remef.org.mx/index.php/remef/index .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.