IDEAS home Printed from https://ideas.repec.org/a/ibn/jasjnl/v9y2017i9p182.html
   My bibliography  Save this article

The Effect of Irrigation Intervals on the Growth and Yield of Quinoa Crop and Its Components

Author

Listed:
  • Abdullah Algosaibi
  • Ayman Badran
  • Abdulrahman Almadini
  • Mohammed El-Garawany

Abstract

This experiment was conducted to study the effect of irrigation intervals on growth, yield and its components and some of the chemical characteristics of the soil after the harvest of quinoa (Chenopodium quinoa willd) plant. Three treatments were used as follow- T1 (twice irrigation every week, which is the common in the region), T2 (once irrigation every week) and T3 (twice irrigation every two weeks) using in a randomized complete block design with four replicates. The crop coefficient (Kc) value differed according to the stage of growth where the results showed that the T2 treatment gave the highest mean in all the studied traits followed by the T3 treatment in all traits except the number of seed/m2. The results also confirmed that the increase in water reduced the agronomic traits such as harvest index, number of seeds and yield of seeds and straw/m2. Also it showed that the pH values in soils were not significantly affected by irrigation, while Ec significantly affected. Correlation coefficient was negative with the most traits and low with the number of grain (0.34) under overall studied treatments which confirms that quinoa is a plant that needs limited amounts of irrigation water. On the other hand there was positive strong correlation between the harvest index and grain yield (0.92). The results showed that moisture stress treatments increased the concentration of the ionic, NH4-N and NO3-N significantly compared to soils which do not have moisture stress (T1, T2). We assume that the development based on Kc during growth-stages helps in irrigation management and provides precise water applications for quinoa plant. These results indicate that the water requirements of quinoa plant are limited and that quinoa plant growth is not affected by the lack of irrigation water on the crop and its qualities.

Suggested Citation

  • Abdullah Algosaibi & Ayman Badran & Abdulrahman Almadini & Mohammed El-Garawany, 2017. "The Effect of Irrigation Intervals on the Growth and Yield of Quinoa Crop and Its Components," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 9(9), pages 182-182, August.
  • Handle: RePEc:ibn:jasjnl:v:9:y:2017:i:9:p:182
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/jas/article/download/67843/38157
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/jas/article/view/67843
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Heping & Oweis, Theib, 1999. "Water-yield relations and optimal irrigation scheduling of wheat in the Mediterranean region," Agricultural Water Management, Elsevier, vol. 38(3), pages 195-211, January.
    2. Kijne, J. W. & Barker, R. & Molden. D., 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, Reports H032631, International Water Management Institute.
    3. Kijne, Jacob W. & Barker, Randolph & Molden, David J. (ed.), 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, International Water Management Institute, number 138054, January.
    4. Garcia, Magali & Raes, Dirk & Jacobsen, Sven-Erik, 2003. "Evapotranspiration analysis and irrigation requirements of quinoa (Chenopodium quinoa) in the Bolivian highlands," Agricultural Water Management, Elsevier, vol. 60(2), pages 119-134, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geerts, S. & Raes, D. & Garcia, M., 2010. "Using AquaCrop to derive deficit irrigation schedules," Agricultural Water Management, Elsevier, vol. 98(1), pages 213-216, December.
    2. Mohamed Kharrou & Michel Le Page & Ahmed Chehbouni & Vincent Simonneaux & Salah Er-Raki & Lionel Jarlan & Lahcen Ouzine & Said Khabba & Ghani Chehbouni, 2013. "Assessment of Equity and Adequacy of Water Delivery in Irrigation Systems Using Remote Sensing-Based Indicators in Semi-Arid Region, Morocco," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4697-4714, October.
    3. Araya, A. & Gowda, P.H. & Golden, B. & Foster, A.J. & Aguilar, J. & Currie, R. & Ciampitti, I.A. & Prasad, P.V.V., 2019. "Economic value and water productivity of major irrigated crops in the Ogallala aquifer region," Agricultural Water Management, Elsevier, vol. 214(C), pages 55-63.
    4. Peake, A.S. & Carberry, P.S. & Raine, S.R. & Gett, V. & Smith, R.J., 2016. "An alternative approach to whole-farm deficit irrigation analysis: Evaluating the risk-efficiency of wheat irrigation strategies in sub-tropical Australia," Agricultural Water Management, Elsevier, vol. 169(C), pages 61-76.
    5. Metin Sezen, S. & Yazar, Attila, 2006. "Wheat yield response to line-source sprinkler irrigation in the arid Southeast Anatolia region of Turkey," Agricultural Water Management, Elsevier, vol. 81(1-2), pages 59-76, March.
    6. Manish Yadav & B. B. Vashisht & S. K. Jalota & T. Jyolsna & Samar Pal Singh & Arun Kumar & Amit Kumar & Gurjeet Singh, 2024. "Improving Water Efficiencies in Rural Agriculture for Sustainability of Water Resources: A Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(10), pages 3505-3526, August.
    7. Oweis, Theib & Hachum, Ahmed, 2006. "Water harvesting and supplemental irrigation for improved water productivity of dry farming systems in West Asia and North Africa," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 57-73, February.
    8. Abdul Latief A. Al-Ghzawi & Yahya Bani Khalaf & Zakaria I. Al-Ajlouni & Nisreen A. AL-Quraan & Iyad Musallam & Nabeel Bani Hani, 2018. "The Effect of Supplemental Irrigation on Canopy Temperature Depression, Chlorophyll Content, and Water Use Efficiency in Three Wheat ( Triticum aestivum L. and T. durum Desf.) Varieties Grown in Dry R," Agriculture, MDPI, vol. 8(5), pages 1-23, May.
    9. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    10. Araya, A. & Prasad, P.V.V. & Gowda, P.H. & Afewerk, A. & Abadi, B. & Foster, A.J., 2019. "Modeling irrigation and nitrogen management of wheat in northern Ethiopia," Agricultural Water Management, Elsevier, vol. 216(C), pages 264-272.
    11. Sarkar, S. & Biswas, M. & Goswami, S.B. & Bandyopadhyay, P.K., 2010. "Yield and water use efficiency of cauliflower under varying irrigation frequencies and water application methods in Lower Gangetic Plain of India," Agricultural Water Management, Elsevier, vol. 97(10), pages 1655-1662, October.
    12. Karrou, M. & Oweis, T., 2012. "Water and land productivities of wheat and food legumes with deficit supplemental irrigation in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 107(C), pages 94-103.
    13. Molden, David & Oweis, Theib & Steduto, Pasquale & Bindraban, Prem & Hanjra, Munir A. & Kijne, Jacob, 2010. "Improving agricultural water productivity: Between optimism and caution," Agricultural Water Management, Elsevier, vol. 97(4), pages 528-535, April.
    14. Giordano, Meredith & Turral, H. & Scheierling, S. M. & Treguer, D. O. & McCornick, Peter G, 2017. "Beyond “More Crop per Drop”: evolving thinking on agricultural water productivity," IWMI Research Reports 257962, International Water Management Institute.
    15. Bouman, B. A.M., 2007. "A conceptual framework for the improvement of crop water productivity at different spatial scales," Agricultural Systems, Elsevier, vol. 93(1-3), pages 43-60, March.
    16. Rockström, Johan & Karlberg, Louise & Wani, Suhas P. & Barron, Jennie & Hatibu, Nuhu & Oweis, Theib & Bruggeman, Adriana & Farahani, Jalali & Qiang, Zhu, 2010. "Managing water in rainfed agriculture--The need for a paradigm shift," Agricultural Water Management, Elsevier, vol. 97(4), pages 543-550, April.
    17. Oweis, Theib & Hachum, Ahmed, 2009. "Optimizing supplemental irrigation: Tradeoffs between profitability and sustainability," Agricultural Water Management, Elsevier, vol. 96(3), pages 511-516, March.
    18. Ali, M.H. & Talukder, M.S.U., 2008. "Increasing water productivity in crop production--A synthesis," Agricultural Water Management, Elsevier, vol. 95(11), pages 1201-1213, November.
    19. Oweis, Theib & Hachum, Ahmed & Pala, Mustafa, 2004. "Water use efficiency of winter-sown chickpea under supplemental irrigation in a mediterranean environment," Agricultural Water Management, Elsevier, vol. 66(2), pages 163-179, April.
    20. Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jasjnl:v:9:y:2017:i:9:p:182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.