IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v96y2009i11p1652-1658.html
   My bibliography  Save this article

Modeling the potential for closing quinoa yield gaps under varying water availability in the Bolivian Altiplano

Author

Listed:
  • Geerts, S.
  • Raes, D.
  • Garcia, M.
  • Taboada, C.
  • Miranda, R.
  • Cusicanqui, J.
  • Mhizha, T.
  • Vacher, J.

Abstract

In the Bolivian Altiplano, the yields of rainfed quinoa are relatively low and highly unstable. We use a validated crop water productivity model to examine the potential of closing quinoa yield gaps in this region. We simulate the expectable yields under rainfed cultivation and under different deficit irrigation (DI) strategies using the AquaCrop model for the Northern, Central and Southern Bolivian Altiplano. Simulated DI scenarios include a reference strategy avoiding stomatal closure during all sensitive growth stages and allowing drought stress during the tolerant growth stages (DI0) and various restrictive deficit irrigation strategies (DIi) representing cases when water resources are limited. We obtain a logistic crop water production function for quinoa by plotting the seasonal actual evapotranspiration versus total grain yield. Due to the large scatter, this function only indicatively provides expectable yields. From the scenario analysis, we derive yield probability curves for the 3 agro-climatic regions. DI, without restriction in irrigation water during the drought sensitive growth stages, is able to close the yield gaps in the Northern, Central and Southern Bolivian Altiplano, and would guarantee a high and stable level of water productivity (WP). The yields of quinoa under rainfed cultivation during dry years are only 1.1, 0.5 and 0.2Mgha-1 in the Northern, Central and Southern Bolivian Altiplano, whereas under DI0 they are 2.2, 1.6 and 1.5Mgha-1, respectively. Under limited water availability for irrigation, these stable yield levels decrease, most drastically in the Southern Bolivian Altiplano. Below a minimum water availability of 600m3 per ha and 700m3 per ha in the Central and Southern Bolivian Altiplano, respectively, the application of DI for quinoa is not significantly effective and should be avoided to save valuable resources. The yield probability curves we derive can serve as input for stochastic economic analysis of DI of quinoa in the Bolivian Altiplano.

Suggested Citation

  • Geerts, S. & Raes, D. & Garcia, M. & Taboada, C. & Miranda, R. & Cusicanqui, J. & Mhizha, T. & Vacher, J., 2009. "Modeling the potential for closing quinoa yield gaps under varying water availability in the Bolivian Altiplano," Agricultural Water Management, Elsevier, vol. 96(11), pages 1652-1658, November.
  • Handle: RePEc:eee:agiwat:v:96:y:2009:i:11:p:1652-1658
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(09)00194-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Heping & Oweis, Theib, 1999. "Water-yield relations and optimal irrigation scheduling of wheat in the Mediterranean region," Agricultural Water Management, Elsevier, vol. 38(3), pages 195-211, January.
    2. Geerts, Sam & Raes, Dirk & Garcia, Magali & Condori, Octavio & Mamani, Judith & Miranda, Roberto & Cusicanqui, Jorge & Taboada, Cristal & Yucra, Edwin & Vacher, Jean, 2008. "Could deficit irrigation be a sustainable practice for quinoa (Chenopodium quinoa Willd.) in the Southern Bolivian Altiplano?," Agricultural Water Management, Elsevier, vol. 95(8), pages 909-917, August.
    3. Bos, M. G., 1997. "Performance indicators for irrigation and drainage," Conference Papers h044141, International Water Management Institute.
    4. DeTar, W.R., 2008. "Yield and growth characteristics for cotton under various irrigation regimes on sandy soil," Agricultural Water Management, Elsevier, vol. 95(1), pages 69-76, January.
    5. English, Marshall & Raja, Syed Navaid, 1996. "Perspectives on deficit irrigation," Agricultural Water Management, Elsevier, vol. 32(1), pages 1-14, November.
    6. Pereira, Luis Santos & Oweis, Theib & Zairi, Abdelaziz, 2002. "Irrigation management under water scarcity," Agricultural Water Management, Elsevier, vol. 57(3), pages 175-206, December.
    7. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    8. Fox, P. & Rockstrom, J., 2003. "Supplemental irrigation for dry-spell mitigation of rainfed agriculture in the Sahel," Agricultural Water Management, Elsevier, vol. 61(1), pages 29-50, June.
    9. Raes, Dirk & Geerts, Sam & Kipkorir, Emmanuel & Wellens, Joost & Sahli, Ali, 2006. "Simulation of yield decline as a result of water stress with a robust soil water balance model," Agricultural Water Management, Elsevier, vol. 81(3), pages 335-357, March.
    10. Timsina, J. & Godwin, D. & Humphreys, E. & Yadvinder-Singh & Bijay-Singh & Kukal, S.S. & Smith, D., 2008. "Evaluation of options for increasing yield and water productivity of wheat in Punjab, India using the DSSAT-CSM-CERES-Wheat model," Agricultural Water Management, Elsevier, vol. 95(9), pages 1099-1110, September.
    11. Garcia, Magali & Raes, Dirk & Jacobsen, Sven-Erik, 2003. "Evapotranspiration analysis and irrigation requirements of quinoa (Chenopodium quinoa) in the Bolivian highlands," Agricultural Water Management, Elsevier, vol. 60(2), pages 119-134, May.
    12. Farre, Imma & Faci, Jose Maria, 2006. "Comparative response of maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) to deficit irrigation in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 135-143, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Geerts, S. & Raes, D. & Garcia, M., 2010. "Using AquaCrop to derive deficit irrigation schedules," Agricultural Water Management, Elsevier, vol. 98(1), pages 213-216, December.
    2. Terence Dawson & Anita Perryman & Tom Osborne, 2016. "Modelling impacts of climate change on global food security," Climatic Change, Springer, vol. 134(3), pages 429-440, February.
    3. Liu, H.L. & Yang, J.Y. & Tan, C.S. & Drury, C.F. & Reynolds, W.D. & Zhang, T.Q. & Bai, Y.L. & Jin, J. & He, P. & Hoogenboom, G., 2011. "Simulating water content, crop yield and nitrate-N loss under free and controlled tile drainage with subsurface irrigation using the DSSAT model," Agricultural Water Management, Elsevier, vol. 98(6), pages 1105-1111, April.
    4. Geneille E. Greaves & Yu-Min Wang, 2017. "Identifying Irrigation Strategies for Improved Agricultural Water Productivity in Irrigated Maize Production through Crop Simulation Modelling," Sustainability, MDPI, vol. 9(4), pages 1-17, April.
    5. Dhouib, M. & Zitouna-Chebbi, R. & Prévot, L. & Molénat, J. & Mekki, I. & Jacob, F., 2022. "Multicriteria evaluation of the AquaCrop crop model in a hilly rainfed Mediterranean agrosystem," Agricultural Water Management, Elsevier, vol. 273(C).
    6. Talebnejad, R. & Sepaskhah, A.R., 2015. "Effect of deficit irrigation and different saline groundwater depths on yield and water productivity of quinoa," Agricultural Water Management, Elsevier, vol. 159(C), pages 225-238.
    7. Fawen Li & Dong Yu & Yong Zhao, 2019. "Irrigation Scheduling Optimization for Cotton Based on the AquaCrop Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(1), pages 39-55, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    2. Geerts, S. & Raes, D. & Garcia, M., 2010. "Using AquaCrop to derive deficit irrigation schedules," Agricultural Water Management, Elsevier, vol. 98(1), pages 213-216, December.
    3. Talebnejad, R. & Sepaskhah, A.R., 2015. "Effect of deficit irrigation and different saline groundwater depths on yield and water productivity of quinoa," Agricultural Water Management, Elsevier, vol. 159(C), pages 225-238.
    4. Mustafa, S.M.T. & Vanuytrecht, E. & Huysmans, M., 2017. "Combined deficit irrigation and soil fertility management on different soil textures to improve wheat yield in drought-prone Bangladesh," Agricultural Water Management, Elsevier, vol. 191(C), pages 124-137.
    5. Andarzian, B. & Bannayan, M. & Steduto, P. & Mazraeh, H. & Barati, M.E. & Barati, M.A. & Rahnama, A., 2011. "Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran," Agricultural Water Management, Elsevier, vol. 100(1), pages 1-8.
    6. Comas, Louise H. & Trout, Thomas J. & DeJonge, Kendall C. & Zhang, Huihui & Gleason, Sean M., 2019. "Water productivity under strategic growth stage-based deficit irrigation in maize," Agricultural Water Management, Elsevier, vol. 212(C), pages 433-440.
    7. Raes, Dirk & Geerts, Sam & Kipkorir, Emmanuel & Wellens, Joost & Sahli, Ali, 2006. "Simulation of yield decline as a result of water stress with a robust soil water balance model," Agricultural Water Management, Elsevier, vol. 81(3), pages 335-357, March.
    8. Foster, T. & Brozović, N., 2018. "Simulating Crop-Water Production Functions Using Crop Growth Models to Support Water Policy Assessments," Ecological Economics, Elsevier, vol. 152(C), pages 9-21.
    9. Barron, Jennie & Okwach, George, 2005. "Run-off water harvesting for dry spell mitigation in maize (Zea mays L.): results from on-farm research in semi-arid Kenya," Agricultural Water Management, Elsevier, vol. 74(1), pages 1-21, May.
    10. Peake, A.S. & Carberry, P.S. & Raine, S.R. & Gett, V. & Smith, R.J., 2016. "An alternative approach to whole-farm deficit irrigation analysis: Evaluating the risk-efficiency of wheat irrigation strategies in sub-tropical Australia," Agricultural Water Management, Elsevier, vol. 169(C), pages 61-76.
    11. Xiangxiang, Wang & Quanjiu, Wang & Jun, Fan & Qiuping, Fu, 2013. "Evaluation of the AquaCrop model for simulating the impact of water deficits and different irrigation regimes on the biomass and yield of winter wheat grown on China's Loess Plateau," Agricultural Water Management, Elsevier, vol. 129(C), pages 95-104.
    12. Jeet Chand & Guna Hewa & Ali Hassanli & Baden Myers, 2020. "Evaluation of Deficit Irrigation and Water Quality on Production and Water Productivity of Tomato in Greenhouse," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    13. Paredes, P. & Rodrigues, G.C. & Alves, I. & Pereira, L.S., 2014. "Partitioning evapotranspiration, yield prediction and economic returns of maize under various irrigation management strategies," Agricultural Water Management, Elsevier, vol. 135(C), pages 27-39.
    14. Pereira, Luis Santos & Oweis, Theib & Zairi, Abdelaziz, 2002. "Irrigation management under water scarcity," Agricultural Water Management, Elsevier, vol. 57(3), pages 175-206, December.
    15. Misra, S.C. & Shinde, S. & Geerts, S. & Rao, V.S. & Monneveux, P., 2010. "Can carbon isotope discrimination and ash content predict grain yield and water use efficiency in wheat?," Agricultural Water Management, Elsevier, vol. 97(1), pages 57-65, January.
    16. Arman Ganji & Sara Kaviani, 2013. "Probability Analysis of Crop Water Stress Index: An Application of Double Bounded Density Function (DB-CDF)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3791-3802, August.
    17. Kundu, M. & Sarkar, S., 2009. "Growth and evapotranspiration pattern of rajmash (Phaseolus vulgaris L.) under varying irrigation schedules and phosphate levels in a hot sub-humid climate," Agricultural Water Management, Elsevier, vol. 96(8), pages 1268-1274, August.
    18. Trevor W. Crosby & Yi Wang, 2021. "Effects of Different Irrigation Management Practices on Potato ( Solanum tuberosum L.)," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    19. Fox, P. & Rockstrom, J. & Barron, J., 2005. "Risk analysis and economic viability of water harvesting for supplemental irrigation in semi-arid Burkina Faso and Kenya," Agricultural Systems, Elsevier, vol. 83(3), pages 231-250, March.
    20. Eric Njuki & Boris E. Bravo-Ureta, 2019. "Examining irrigation productivity in U.S. agriculture using a single-factor approach," Journal of Productivity Analysis, Springer, vol. 51(2), pages 125-136, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:96:y:2009:i:11:p:1652-1658. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.