IDEAS home Printed from https://ideas.repec.org/a/ibn/ijspjl/v10y2021i5p46.html
   My bibliography  Save this article

Assessing Point Forecast Bias Across Multiple Time Series: Measures and Visual Tools

Author

Listed:
  • Andrey Davydenko
  • Paul Goodwin

Abstract

Measuring bias is important as it helps identify flaws in quantitative forecasting methods or judgmental forecasts. It can, therefore, potentially help improve forecasts. Despite this, bias tends to be under-represented in the literature- many studies focus solely on measuring accuracy. Methods for assessing bias in single series are relatively well-known and well-researched, but for datasets containing thousands of observations for multiple series, the methodology for measuring and reporting bias is less obvious. We compare alternative approaches against a number of criteria when rolling-origin point forecasts are available for different forecasting methods and for multiple horizons over multiple series. We focus on relatively simple, yet interpretable and easy-to-implement metrics and visualization tools that are likely to be applicable in practice. To study the statistical properties of alternative measures we use theoretical concepts and simulation experiments based on artificial data with predetermined features. We describe the difference between mean and median bias, describe the connection between metrics for accuracy and bias, provide suitable bias measures depending on the loss function used to optimise forecasts, and suggest which measures for accuracy should be used to accompany bias indicators. We propose several new measures and provide our recommendations on how to evaluate forecast bias across multiple series.

Suggested Citation

  • Andrey Davydenko & Paul Goodwin, 2021. "Assessing Point Forecast Bias Across Multiple Time Series: Measures and Visual Tools," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(5), pages 1-46, September.
  • Handle: RePEc:ibn:ijspjl:v:10:y:2021:i:5:p:46
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/ijsp/article/download/0/0/45817/48887
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/ijsp/article/view/0/45817
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    2. Petropoulos, Fotios & Goodwin, Paul & Fildes, Robert, 2017. "Using a rolling training approach to improve judgmental extrapolations elicited from forecasters with technical knowledge," International Journal of Forecasting, Elsevier, vol. 33(1), pages 314-324.
    3. Fildes, Robert & Goodwin, Paul & Lawrence, Michael & Nikolopoulos, Konstantinos, 2009. "Effective forecasting and judgmental adjustments: an empirical evaluation and strategies for improvement in supply-chain planning," International Journal of Forecasting, Elsevier, vol. 25(1), pages 3-23.
    4. Unknown, 2005. "Forward," 2005 Conference: Slovenia in the EU - Challenges for Agriculture, Food Science and Rural Affairs, November 10-11, 2005, Moravske Toplice, Slovenia 183804, Slovenian Association of Agricultural Economists (DAES).
    5. Goodwin, Paul, 2000. "Correct or combine? Mechanically integrating judgmental forecasts with statistical methods," International Journal of Forecasting, Elsevier, vol. 16(2), pages 261-275.
    6. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2018. "The M4 Competition: Results, findings, conclusion and way forward," International Journal of Forecasting, Elsevier, vol. 34(4), pages 802-808.
    7. Fildes, Robert & Goodwin, Paul, 2021. "Stability in the inefficient use of forecasting systems: A case study in a supply chain company," International Journal of Forecasting, Elsevier, vol. 37(2), pages 1031-1046.
    8. Sanders, Nada R. & Graman, Gregory A., 2009. "Quantifying costs of forecast errors: A case study of the warehouse environment," Omega, Elsevier, vol. 37(1), pages 116-125, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrey Davydenko & Paul Goodwin, 2021. "Bewertung der Verzerrung von Punktprognosen über mehrere Zeitreihen hinweg: Maßnahmen und visuelle Werkzeuge [Assessing point forecast bias across multiple time series: Measures and visual tools]," Post-Print hal-03359179, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrey Davydenko & Paul Goodwin, 2021. "Bewertung der Verzerrung von Punktprognosen über mehrere Zeitreihen hinweg: Maßnahmen und visuelle Werkzeuge [Assessing point forecast bias across multiple time series: Measures and visual tools]," Post-Print hal-03359179, HAL.
    2. Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
    3. Sroginis, Anna & Fildes, Robert & Kourentzes, Nikolaos, 2023. "Use of contextual and model-based information in adjusting promotional forecasts," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1177-1191.
    4. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2022. "Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1283-1318.
    5. Alvarado-Valencia, Jorge & Barrero, Lope H. & Önkal, Dilek & Dennerlein, Jack T., 2017. "Expertise, credibility of system forecasts and integration methods in judgmental demand forecasting," International Journal of Forecasting, Elsevier, vol. 33(1), pages 298-313.
    6. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    7. Perera, H. Niles & Hurley, Jason & Fahimnia, Behnam & Reisi, Mohsen, 2019. "The human factor in supply chain forecasting: A systematic review," European Journal of Operational Research, Elsevier, vol. 274(2), pages 574-600.
    8. Trapero, Juan R. & Pedregal, Diego J. & Fildes, R. & Kourentzes, N., 2013. "Analysis of judgmental adjustments in the presence of promotions," International Journal of Forecasting, Elsevier, vol. 29(2), pages 234-243.
    9. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    10. Philippe St-Aubin & Bruno Agard, 2022. "Precision and Reliability of Forecasts Performance Metrics," Forecasting, MDPI, vol. 4(4), pages 1-22, October.
    11. Leitner, Johannes & Leopold-Wildburger, Ulrike, 2011. "Experiments on forecasting behavior with several sources of information - A review of the literature," European Journal of Operational Research, Elsevier, vol. 213(3), pages 459-469, September.
    12. Syntetos, Aris A. & Kholidasari, Inna & Naim, Mohamed M., 2016. "The effects of integrating management judgement into OUT levels: In or out of context?," European Journal of Operational Research, Elsevier, vol. 249(3), pages 853-863.
    13. Thiyanga S. Talagala & Feng Li & Yanfei Kang, 2019. "Feature-based Forecast-Model Performance Prediction," Monash Econometrics and Business Statistics Working Papers 21/19, Monash University, Department of Econometrics and Business Statistics.
    14. Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
    15. Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
    16. Voyant, Cyril & Notton, Gilles & Duchaud, Jean-Laurent & Gutiérrez, Luis Antonio García & Bright, Jamie M. & Yang, Dazhi, 2022. "Benchmarks for solar radiation time series forecasting," Renewable Energy, Elsevier, vol. 191(C), pages 747-762.
    17. Van Belle, Jente & Guns, Tias & Verbeke, Wouter, 2021. "Using shared sell-through data to forecast wholesaler demand in multi-echelon supply chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 466-479.
    18. Mirko Kremer & Enno Siemsen & Douglas J. Thomas, 2016. "The Sum and Its Parts: Judgmental Hierarchical Forecasting," Management Science, INFORMS, vol. 62(9), pages 2745-2764, September.
    19. De Baets, Shari & Harvey, Nigel, 2018. "Forecasting from time series subject to sporadic perturbations: Effectiveness of different types of forecasting support," International Journal of Forecasting, Elsevier, vol. 34(2), pages 163-180.
    20. Niematallah Elamin & Mototsugu Fukushige, 2017. "Integrating judgment in statistical demand forecasting: An approach to confront uncertainty," Discussion Papers in Economics and Business 17-20, Osaka University, Graduate School of Economics.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:ijspjl:v:10:y:2021:i:5:p:46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.