Bewertung der Verzerrung von Punktprognosen über mehrere Zeitreihen hinweg: Maßnahmen und visuelle Werkzeuge
[Assessing point forecast bias across multiple time series: Measures and visual tools]
Author
Abstract
Suggested Citation
DOI: 10.5539/ijsp.v10n5p46
Note: View the original document on HAL open archive server: https://hal.science/hal-03359179
Download full text from publisher
References listed on IDEAS
- Fildes, Robert & Goodwin, Paul & Lawrence, Michael & Nikolopoulos, Konstantinos, 2009. "Effective forecasting and judgmental adjustments: an empirical evaluation and strategies for improvement in supply-chain planning," International Journal of Forecasting, Elsevier, vol. 25(1), pages 3-23.
- Goodwin, Paul, 2000. "Correct or combine? Mechanically integrating judgmental forecasts with statistical methods," International Journal of Forecasting, Elsevier, vol. 16(2), pages 261-275.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2018. "The M4 Competition: Results, findings, conclusion and way forward," International Journal of Forecasting, Elsevier, vol. 34(4), pages 802-808.
- Fildes, Robert & Goodwin, Paul, 2021. "Stability in the inefficient use of forecasting systems: A case study in a supply chain company," International Journal of Forecasting, Elsevier, vol. 37(2), pages 1031-1046.
- Andrey Davydenko & Paul Goodwin, 2021. "Assessing Point Forecast Bias Across Multiple Time Series: Measures and Visual Tools," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(5), pages 1-46, September.
- Hyndman, Rob J. & Koehler, Anne B., 2006.
"Another look at measures of forecast accuracy,"
International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
- Rob J. Hyndman & Anne B. Koehler, 2005. "Another Look at Measures of Forecast Accuracy," Monash Econometrics and Business Statistics Working Papers 13/05, Monash University, Department of Econometrics and Business Statistics.
- Unknown, 2005. "Forward," 2005 Conference: Slovenia in the EU - Challenges for Agriculture, Food Science and Rural Affairs, November 10-11, 2005, Moravske Toplice, Slovenia 183804, Slovenian Association of Agricultural Economists (DAES).
- Davydenko, Andrey & Goodwin, Paul, 2021. "Assessing Point Forecast Bias Across Multiple Time Series: Measures and Visual Tools," SocArXiv jhtzw, Center for Open Science.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Andrey Davydenko & Paul Goodwin, 2021. "Assessing Point Forecast Bias Across Multiple Time Series: Measures and Visual Tools," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(5), pages 1-46, September.
- repec:osf:socarx:jhtzw_v1 is not listed on IDEAS
- Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
- Alvarado-Valencia, Jorge & Barrero, Lope H. & Önkal, Dilek & Dennerlein, Jack T., 2017. "Expertise, credibility of system forecasts and integration methods in judgmental demand forecasting," International Journal of Forecasting, Elsevier, vol. 33(1), pages 298-313.
- Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2022. "Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1283-1318.
- Trapero, Juan R. & Pedregal, Diego J. & Fildes, R. & Kourentzes, N., 2013. "Analysis of judgmental adjustments in the presence of promotions," International Journal of Forecasting, Elsevier, vol. 29(2), pages 234-243.
- Syntetos, Aris A. & Kholidasari, Inna & Naim, Mohamed M., 2016. "The effects of integrating management judgement into OUT levels: In or out of context?," European Journal of Operational Research, Elsevier, vol. 249(3), pages 853-863.
- Thiyanga S. Talagala & Feng Li & Yanfei Kang, 2019. "Feature-based Forecast-Model Performance Prediction," Monash Econometrics and Business Statistics Working Papers 21/19, Monash University, Department of Econometrics and Business Statistics.
- Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
- Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
- Spiliotis, Evangelos & Petropoulos, Fotios, 2024. "On the update frequency of univariate forecasting models," European Journal of Operational Research, Elsevier, vol. 314(1), pages 111-121.
- Wang, Xun & Rodrigues, Vasco Sanchez & Demir, Emrah & Sarkis, Joseph, 2024. "Algorithm aversion during disruptions: The case of safety stock," International Journal of Production Economics, Elsevier, vol. 278(C).
- Evangelos Spiliotis & Fotios Petropoulos & Vassilios Assimakopoulos, 2023. "On the Disagreement of Forecasting Model Selection Criteria," Forecasting, MDPI, vol. 5(2), pages 1-12, June.
- Karamaziotis, Panagiotis I. & Raptis, Achilleas & Nikolopoulos, Konstantinos & Litsiou, Konstantia & Assimakopoulos, Vassilis, 2020. "An empirical investigation of water consumption forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(2), pages 588-606.
- Wellens, Arnoud P. & Boute, Robert N. & Udenio, Maximiliano, 2024. "Simplifying tree-based methods for retail sales forecasting with explanatory variables," European Journal of Operational Research, Elsevier, vol. 314(2), pages 523-539.
- Arvan, Meysam & Fahimnia, Behnam & Reisi, Mohsen & Siemsen, Enno, 2019. "Integrating human judgement into quantitative forecasting methods: A review," Omega, Elsevier, vol. 86(C), pages 237-252.
- Huang, Tao & Fildes, Robert & Soopramanien, Didier, 2019. "Forecasting retailer product sales in the presence of structural change," European Journal of Operational Research, Elsevier, vol. 279(2), pages 459-470.
- Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Petropoulos, Fotios, 2017.
"Forecasting with temporal hierarchies,"
European Journal of Operational Research, Elsevier, vol. 262(1), pages 60-74.
- Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Petropoulos, Fotios, 2015. "Forecasting with Temporal Hierarchies," MPRA Paper 66362, University Library of Munich, Germany.
- George Athanasopoulos & Rob J Hyndman & Nikolaos Kourentzes & Fotios Petropoulos, 2015. "Forecasting with Temporal Hierarchies," Monash Econometrics and Business Statistics Working Papers 16/15, Monash University, Department of Econometrics and Business Statistics.
- Kang, Yanfei & Cao, Wei & Petropoulos, Fotios & Li, Feng, 2022. "Forecast with forecasts: Diversity matters," European Journal of Operational Research, Elsevier, vol. 301(1), pages 180-190.
- Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2019. "Retail forecasting: research and practice," MPRA Paper 89356, University Library of Munich, Germany.
- Semenoglou, Artemios-Anargyros & Spiliotis, Evangelos & Makridakis, Spyros & Assimakopoulos, Vassilios, 2021. "Investigating the accuracy of cross-learning time series forecasting methods," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1072-1084.
More about this item
Keywords
forecasting; forecast bias; mean bias; median bias; MPE; AvgRel-metrics; AvgRelAME; AvgRelAMdE; RelAME; RelMdE; AvgRelME; AvgRelMdE; OPc; Mean Percentage Error; MAD/MEAN ratio; Overestimation Percentage corrected; OPc-diagram; OPc-boxplot; AvgRel-prefix; RelAMdE; RelME; absolute mean error; absolute median error; AvgRelRMSE; AvgRelMAE; AvgRelMSE; AvgRel-boxplots; statistical graphics; forecast evaluation workflow; FEW; FEW-L1; FEW-L2; pooled prediction-realization diagram; prediction-realization diagram; criteria for error measures; construct validity; target loss function; point forecast evaluation setup; PFES; forecasting competitions; testing for bias; geometric mean; optimal correction of forecasts; symmetric quadratic loss; symmetric linear loss; absolute mean scaled error; LnQ; ease of communication; ease of interpretation; ease of implementation; scale-independence; time series analysis; rolling-origin evaluation; inventory control; relative root mean squared error; RelRMSE; relative performance; forecast evaluation setup; data science; forecast density; mean-unbiasedness; median-unbiasedness; binomial test; Wilcoxon signed rank test; boxplots; double-scale plots;All these keywords.
JEL classification:
NEP fields
This paper has been announced in the following NEP Reports:- NEP-FOR-2021-10-11 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03359179. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.